CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Hybridization Induced Competitive Scanning Tunneling Interference Process into a Heavy Fermion System |
Fu-Bin Yang** |
Department of Physics, College of Computer, Civil Aviation Flight University of China, Guanghan 618307
|
|
Cite this article: |
Fu-Bin Yang 2018 Chin. Phys. Lett. 35 077502 |
|
|
Abstract We theoretically present the results for a scanning interference tunneling process between a metallic tip and a heavy fermion system. The density of states (DOS) and the differential conductance at zero temperature under different $c$–$f$ band hybridizations, as well as the interference Fano ratio strength in the heavy fermion system, are calculated. It is found that the hybridization strength gives rise to the splitting effect in the DOS around the Fermi energy. Also the interference Fano ratio strength makes the differential conductance characteristics strongly asymmetric.
|
|
Received: 04 December 2017
Published: 24 June 2018
|
|
PACS: |
75.30.Mb
|
(Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
85.35.Ds
|
(Quantum interference devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11547203. |
|
|
[1] | Schmidt A R et al 2010 Nature 465 570 | [2] | Truncik C J S et al 2013 Nat. Commun. 4 2477 | [3] | Stewart G R 2006 Rev. Mod. Phys. 78 743 | [4] | Stewart G R 1984 Rev. Mod. Phys. 56 755 | [5] | Degiorgi L 1999 Rev. Mod. Phys. 71 687 | [6] | Coleman P et al 2007 Handbook of Magnetism and Advanced Magnetic Materials (New York: John Wiley & Sons) vol 1 p 35 | [7] | Yang Y f 2009 Phys. Rev. B 79 241107 | | van Dyke J S et al 2014 Proc. Natl. Acad. Sci. USA 111 11663 | | Baruselli P P and Vojta M 2016 Phys. Rev. B 93 235111 | | Zhang S f et al 2016 Phys. Rev. B 94 085124 | [8] | Fisk Z and Ott H R 2010 Superconductivity in New Materials (Netherlands: Elsevier) vol 4 p 45 | [9] | Mydosh J A and Oppeneer P M 2011 Rev. Mod. Phys. 83 1301 | [10] | Ernst S et al 2011 Nature 474 362 | [11] | Coleman P and Schofield A J 2005 Nature 433 226 | [12] | Aynajian P et al 2012 Nature 486 201 | [13] | Davis J C and Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623 | [14] | Park W K et al 2009 J. Phys.: Conf. Ser. 150 052207 | [15] | Allan M P et al 2013 Nat. Phys. 9 468 | [16] | Aynajian P et al 2010 Proc. Natl. Acad. Sci. USA 107 10383 | [17] | Park W K et al 2012 Phys. Rev. Lett. 108 246403 | [18] | Zhang X H et al 2013 Phys. Rev. X 3 011011 | [19] | Rößlera S et al 2014 Proc. Natl. Acad. Sci. USA 111 4798 | [20] | van Dyke John S et al 2016 Phys. Rev. B 93 041107(R) | | Yang F B and Wu H 2016 Commun. Theor. Phys. 65 629 | [21] | Lu X et al 2012 Phys. Rev. B 85 020402 | [22] | Zhou B et al 2013 Nat. Phys. 9 474 | [23] | Newns D M and Read N 1987 Adv. Phys. 36 799 | [24] | Read N and Newns D M 1983 J. Phys. C 16 3273 | | Coleman P 1984 Phys. Rev. B 29 3035 | [25] | Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 103 033513 | | Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 102 011911 | [26] | Zhu J, Julien J P, Dubi Y and Balatsky A V 2012 Phys. Rev. Lett. 108 186401 | | Yang F B, Wu ShQ and Sun W L 2007 Chin. Phys. Lett. 24 2056 | | Yan C H, Wu ShQ, Sun W L and Huang R 2008 Chin. Phys. B 17 296 | [27] | Madhavan V, Chen W, Jamneala T and Crommie M F 2001 Phys. Rev. B 64 165412 | | Figgins J and Morr D K 2010 Phys. Rev. Lett. 104 187202 | [28] | Maltseva M, Dzero M and Coleman P 2009 Phys. Rev. Lett. 103 206402 | [29] | Parka W K, Narasiwodeyara S M, Bauerb E D, Tobashb P H, Baumbachb R E, Ronningb F, Sarraob J L, Thompsonb J D and Greenea L H 2014 Philos. Mag. 94 3737 | | Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408 | [30] | Hamidian M H, Schmidta A R, Firmo I A, Allan M P, Bradleye P, Garrettf J D, Williamsg T J, Luke G M, Dubi Y, Balatsky A V and Davis J C 2011 Proc. Natl. Acad. Sci. USA 108 18233 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|