Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077104    DOI: 10.1088/0256-307X/35/7/077104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Two Gaps in Semiconducting EuSbTe$_3$ Studied by Angle-Resolved Photoemission Spectroscopy
Cong-Cong Fan1,2, Ji-Shan Liu1, Kai-Li Zhang1, Wan-Ling Liu1, Xiang-Le Lu1, Zheng-Tai Liu1, Dong Wu3, Zhong-Hao Liu1**, Da-Wei Shen1,4**, Li-Xing You1,4
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
4CAS Center for Excellence in Superconducting Electronics, Shanghai 200050
Cite this article:   
Cong-Cong Fan, Ji-Shan Liu, Kai-Li Zhang et al  2018 Chin. Phys. Lett. 35 077104
Download: PDF(968KB)   PDF(mobile)(957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using angle-resolved photoemission spectroscopy, we study the low-energy electronic structure of a layered ternary telluride EuSbTe$_3$ semiconductor. It is found that the photoemission constant energy contours can be well described by the simple two-parameter ($t_{\rm perp}$ and $t_{\rm para}$) tight-binding model based on the Te orbitals in square-net planes of EuSbTe$_3$, suggesting its Te 5$p$ orbitals dominated low-lying electronic structure, which is reminiscent of other rare-earth tritellurides. However, a possible charge-density-wave gap of 80 meV is found to persist in 300 K, which renders the unexpected semiconducting properties in EuSbTe$_3$. Moreover, we reveal an extra band gap occurring around 200 meV below the Fermi level at low temperatures, which can be attributed to the interaction between the main and folded bands due to lattice scatterings. Our findings provide the first comprehensive understanding of the electronic structure of layered ternary tellurides, which lays the basis for future research on these compounds.
Received: 23 April 2018      Published: 24 June 2018
PACS:  71.45.Lr (Charge-density-wave systems)  
  71.20.Mq (Elemental semiconductors)  
  79.60.Bm (Clean metal, semiconductor, and insulator surfaces)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFA0300204, the National Basic Research Program of China under Grant No 2015CB654901, the National Natural Science Foundation of China under Grant Nos 11574337, 11227902, 11474147 and 11704394, the Shanghai Sailing Program under Grant No 17YF1422900, and the Award for Outstanding Member in Youth Innovation Promotion Association CAS.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077104       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cong-Cong Fan
Ji-Shan Liu
Kai-Li Zhang
Wan-Ling Liu
Xiang-Le Lu
Zheng-Tai Liu
Dong Wu
Zhong-Hao Liu
Da-Wei Shen
Li-Xing You
[1]Shin K Y, Laverock J, Wu Y Q, Condron C L, Toney M F, Dugdale S B, Kramer M J and Fisher I R 2008 Phys. Rev. B 77 165101
[2]Gweon G H, Denlinger J D, Clack J A, Allen J W, Olson C G, DiMasi E D, Aronson M C, Foran B and Lee S 1998 Phys. Rev. Lett. 81 886
[3]Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R and Shen Z X 2004 Phys. Rev. Lett. 93 126405
[4]Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N and Fisher I R 2008 Phys. Rev. B 77 235104
[5]Moore R G, Brouet V, He R, Lu D H, Ru N, Chu J H, Fisher I R and Shen Z X 2010 Phys. Rev. B 81 073102
[6]Lou R, Cai Y P, Liu Z H, Qian T, Zhao L X, Li Y, Liu K, Han Z Q, Zhang D D, He J B, Chen G F, Ding H and Wang S C 2016 Phys. Rev. B 93 115133
[7]Kivelson S A, Fradkin E and Emery V J 1998 Nature 393 550
[8]Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kaptulnik A and Howald C 2003 Rev. Mod. Phys. 75 1201
[9]Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[10]Niu Y Y, Wu D, Shen L and Wang B 2015 Phys. Status Solidi RRL 9 735
[11]Yao H, Robertson J A, Kim E A and Kivelson S A 2006 Phys. Rev. B 74 245126
[12]Inosov D S, Zabolotnyy V B, Evtushinsky D V, Kordyuk A A, Büchner B, Follath R, Berger H and Borisenko S V 2008 New J. Phys. 10 125027
[13]Borisenko S V, Kordyuk A A, Yaresko A N, Zabolotnyy V B, Inosov D S, Schuster R, Büchner B, Weber R, Follath R, Patthey L and Berger H 2008 Phys. Rev. Lett. 100 196402
[14]Shen D W, Zhang Y, Yang L X, Wei J, Ou H W, Dong J K, He C, Xie B P, Zhao J F, Zhou B, Arita M, Shimada K, Namatame H, Taniguchi M, Shi J and Feng D L 2008 Phys. Rev. Lett. 101 226406
[15]Borisenko S V, Kordyuk A A, Zabolotnyy V B, Inosov D S, Evtushinsky D, Büchner B, Yaresko A N, Varykhalov A, Follath R, Eberhardt W, Patthey L and Berger H 2009 Phys. Rev. Lett. 102 166402
[16]Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E and Kevan S D 2003 Phys. Rev. Lett. 91 066401
[17]Voit J, Perfetti L, Zwick F, Berger H, Margaritondo G, Gruner G, Hochst H and Grioni M 2000 Science 290 501
Related articles from Frontiers Journals
[1] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 077104
[2] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 077104
[3] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 077104
[4] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 077104
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 077104
[6] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 077104
[7] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 077104
[8] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 077104
[9] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 077104
[10] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 077104
[11] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 077104
[12] WU Yue, DONG Xiao-Li, MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian. Two Superconducting Phases and Their Characteristics in Layered BaTi2(Sb1?xBix)2O with x=0.16[J]. Chin. Phys. Lett., 2014, 31(07): 077104
[13] WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements[J]. Chin. Phys. Lett., 2008, 25(5): 077104
[14] LI Da-Hua, XIONG Rui, WANG Jun-Feng, LI Chang-Zhen, YIN Di, YI Fan, TANG Wu-Feng, SHI Jing,. The Second Threshold Field of Charge-Density-Wave Conductor Rb0.3MoO3 in High Temperature Range[J]. Chin. Phys. Lett., 2005, 22(5): 077104
[15] WANG Wei-Zhong, YAO Kai-Lun. Exact Solution of an Extended Hubbard Model with Electron-Lattice Interaction for an Organic Ferromagnetic Polymer[J]. Chin. Phys. Lett., 2002, 19(2): 077104
Viewed
Full text


Abstract