Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 070501    DOI: 10.1088/0256-307X/35/7/070501
GENERAL |
Nonlinear Excitation and State Transition of Multi-Peak Solitons
Xiang-Shu Liu1,2, Yang Ren1,3, Zhan-Ying Yang1,3**, Chong Liu1,3**, Wen-Li Yang3,4
1School of Physics, Northwest University, Xi'an 710069
2Faculty of Science, Qinzhou University, Qinzhou 535000
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069
4Institute of Modern Physics, Northwest University, Xi'an 710069
Cite this article:   
Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang et al  2018 Chin. Phys. Lett. 35 070501
Download: PDF(949KB)   PDF(mobile)(940KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the nonlinear excitations in the integrable fifth-order nonlinear Schrödinger equation on a continuous wave background. The excited condition of each localized wave is demonstrated via concise phase diagrams. In particular, the rule of transition between asymmetric and symmetric multi-peak solitons is revealed. It is shown that the initial phase modulation can induce the transition and the transition condition is demonstrated exactly. Interestingly, our result shows that although the multi-peak solitons exhibit structural diversity, both the asymmetric and symmetric states possess an identical asymmetric spectrum structure.
Received: 13 March 2018      Published: 24 June 2018
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11705145 and 11475135, the Guangxi Provincial Education Department Research Project of China under Grant No 2017KY0776, the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 17JK0767, and the Major Basic Research Program of Natural Science of Shaanxi Province under Grant Nos 2017KCT-12 and 2017ZDJC-32.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/070501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Shu Liu
Yang Ren
Zhan-Ying Yang
Chong Liu
Wen-Li Yang
[1]Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[2]Dudley J M, Dias F, Erkintalo M and Genty G 2014 Nat. Photon. 8 755
[3]Peregrine D H 1983 ANZIAM J. 25 16
[4]Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[5]Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
[6]Onorato M, Residori S, Baronio F et al 2016 Rogue and Shock Waves in Nonlinear Dispersive Media (Switzerland: Springer)
[7]Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[8]Dai C Q, Liu J, Fan Y and Yu D G 2017 Nonlinear Dyn. 88 1373
[9]Zhang X and Chen Y 2017 Commun. Nonlinear Sci. Numer. Simul. 52 24
[10]Kuznetsov E A 1977 Akademiia Nauk SSSR Dokl. 236 575
[11]Ma Y C 1979 Stud. Appl. Math. 60 43
[12]Zhao L C, Ling L M and Yang Z Y 2018 Phys. Rev. E 97 022218
[13]Liu C, Ren Y, Yang Z Y and Yang W L 2017 Chaos 27 083120
[14]Liu W J, Han H N, Zhang L, Wang R, Wei Z Y and Lei M 2014 Laser Phys. Lett. 11 045402
[15]Ren Y, Wang X, Liu C, Yang Z Y and Yang W L 2018 Commun. Nonlinear Sci. Numer. Simul. 63 161
[16]Agrawal G P 2007 Nonlinear Fiber Optics (Boston: Acdemic Press)
[17]Tao Y S and He J S 2012 Phys. Rev. E 85 026601
[18]Zhao L C, Li S C and Ling L M 2016 Phys. Rev. E 93 032215
[19]Ankiewicz A, Wang Y, Wabnitz S and Akhmediev N 2014 Phys. Rev. E 89 012907
[20]Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
[21]Liu C, Wang L, Yang Z Y and Yang W L 2017 arXiv:1708.03781v1
[22]Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E 91 022904
[23]Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Ann. Phys. 362 130
[24]Duan L, Zhao L C, Xu W H, Liu C, Yang Z Y and Yang W L 2017 Phys. Rev. E 95 042212
[25]Liu C, Yang Z Y, Zhao L C, Duan L, Yang G and Yang W L 2016 Phys. Rev. E 94 042221
[26]Chowdury A, Kedziora D J, Ankiewicz A and Akhmediev N 2015 Phys. Rev. E 91 032928
[27]Neshev D, Ostrovskaya E, Kivshar Y and Krolikowski W 2003 Opt. Lett. 28 710
[28]Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[29]Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[30]Agrawal G P 2011 J. Opt. Soc. Am. B 28 A1
[31]Kodama Y and Hasegawa A 1987 IEEE J. Quantum Electron. 23 510
[32]Hirota R 1973 J. Math. Phys. 14 805
[33]Lakshmanan M, Porsezian K and Daniel M 1988 Phys. Lett. A 133 483
[34]Porsezian K 1997 Phys. Rev. E 55 3785
[35]Kano T 1989 J. Phys. Soc. Jpn. 58 4322
[36]Ankiewicz A and Akhmediev N 2014 Phys. Lett. A 378 358
[37]Blanco-Redondo A, De Sterke C M, Sipe J E, Krauss T F, Eggleton B J and Husko C 2016 Nat. Commun. 7 10427
[38]Hoseini S M and Marchant T R 2006 Wave Motion 44 92
[39]Chowdury A, Kedziora D J, Ankiewicz A and Akhmediev N 2014 Phys. Rev. E 90 032922
[40]Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[41]Gelash A A and Zakharov V E 2014 Nonlinearity 27 R1
[42]Workman J and Springsteen A 1998 Applied Spectroscopy: a Compact Reference for Practitioners (New York: Academic Press)
[43]Hollas J M 2004 Modern Spectroscopy (Hoboken: John Wiley and Sons)
[44]Duan L, Yang Z Y, Zhao L C and Yang W L 2016 J. Mod. Opt. 63 1397
[45]Akhmediev N, Ankiewicz A, Soto-Crespo J M and Dudley J M 2011 Phys. Lett. A 375 541
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 070501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 070501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 070501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 070501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 070501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 070501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 070501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 070501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 070501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 070501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 070501
Viewed
Full text


Abstract