Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 070201    DOI: 10.1088/0256-307X/35/7/070201
GENERAL |
Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach
Zhou-Zheng Kang1,2, Tie-Cheng Xia1**, Xi Ma1
1Department of Mathematics, Shanghai University, Shanghai 200444
2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043
Cite this article:   
Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma 2018 Chin. Phys. Lett. 35 070201
Download: PDF(452KB)   PDF(mobile)(449KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We aim to construct multi-soliton solutions for the coupled Fokas–Lenells system which arises as a model for describing the nonlinear pulse propagation in optical fibers. Starting from the spectral analysis of the Lax pair, a Riemann–Hilbert problem is presented. Then in the framework of the Riemann–Hilbert problem corresponding to the reflectionless case, $N$-soliton solutions to the coupled Fokas–Lenells system are derived explicitly.
Received: 26 March 2018      Published: 24 June 2018
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61072147 and 11271008.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/070201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/070201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhou-Zheng Kang
Tie-Cheng Xia
Xi Ma
[1]Zhang M X 2015 J. Nonlinear Math. Phys. 22 144
[2]Zhang Y, Yang J W, Chow K W and Wu C F 2017 Nonlinear Anal.: Real World Appl. 33 237
[3]Ling L M, Feng B F and Zhu Z N 2018 Nonlinear Anal.: Real World Appl. 40 185
[4]Gardner C S, Greene J M, Kruskal M D and Miura R M 1976 Phys. Rev. E 19 1395
[5]Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[6]Wazwaz A M 2007 Appl. Math. Comput. 190 633
[7]Wazwaz A M 2017 Appl. Math. Lett. 64 21
[8]Chai J, Tian B and Chai H P 2018 Commun. Theor. Phys. 69 188
[9]Ling L M, Zhao L C and Guo B L 2015 Nonlinearity 28 3243
[10]Wang X and Geng X G 2017 Commun. Theor. Phys. 68 155
[11]Xu T and Chen Y 2018 Commun. Nonlinear Sci. Numer. Simul. 57 276
[12]Wu J P and Geng X G 2017 Commun. Nonlinear Sci. Numer. Simul. 53 83
[13]Wang D S and Wang X L 2018 Nonlinear Anal.: Real World Appl. 41 334
[14]Guo B L, Liu N and Wang Y F 2018 J. Math. Anal. Appl. 459 145
[15]Geng X G and Wu J P 2016 Wave Motion 60 62
[16]Hu B B, Xia T C, Zhang N and Wang J B 2018 Int. J. Nonlinear Sci. Numer. Simul. 19 83
[17]Zhang N, Xia T C and Fan E G accepted by Acta Math. Appl. Sin. Engl. Ser.
[18]Hu B B and Xia T C 2017 arXiv:1711.03861
[19]Wang D S, Yin S J, Tian Y and Liu Y F 2014 Appl. Math. Comput. 229 296
[20]Guo B L and Ling L M 2012 J. Math. Phys. 53 073506
[21]Zhang N, Xia T C and Hu B B 2017 Commun. Theor. Phys. 68 580
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070201
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 070201
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 070201
[4] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 070201
[5] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 070201
[6] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 070201
[7] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 070201
[8] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 070201
[9] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 070201
[10] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 070201
[11] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 070201
[12] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 070201
[13] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 070201
[14] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 070201
[15] GENG Xian-Guo, WANG Hui. A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures[J]. Chin. Phys. Lett., 2014, 31(07): 070201
Viewed
Full text


Abstract