CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method |
Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun, Lei Sun, Zhen-Hua Li, Shu-Xia Ren** |
School of Material Science and Engineering, Shijiazhuang TieDao University, Shijiazhuang 050043
|
|
Cite this article: |
Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun et al 2018 Chin. Phys. Lett. 35 067501 |
|
|
Abstract High-surface-area ZnO nanosheets are prepared using a template-assisted hydrothermal method. A saturation moment as high as 0.02 emu/g is obtained for the ZnO nanosheets. Both photoluminescence spectroscopy and x-ray photoelectron spectroscopy demonstrate the existence of abundant oxygen vacancies on the surfaces of the nanosheets. In addition, the oxygen vacancy concentration increases with an increasing nanosheet surface area. The results show that the origin of the room-temperature ferromagnetism is closely related with a large surface area and oxygen vacancies of the nanosheets. This finding suggests that the high-surface-area ZnO nanosheets are promising to be applied to spintronic devices.
|
|
Received: 09 February 2018
Published: 19 May 2018
|
|
PACS: |
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
81.16.Be
|
(Chemical synthesis methods)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0201001, the National Natural Science Foundation of China under Grant No 11574071, the Natural Science Foundation for Outstanding Young Researcher in Hebei Province under Grant No E2016210093, and the Natural Science Foundation of Hebei Province under Grant No A2018210123. |
|
|
[1] | Yu U, Nili A M, Mikelsons K, Moritz B, Moreno J and Jarrell M 2010 Phys. Rev. Lett. 104 037201 | [2] | Chang Y, Sun Q, Long Y and Wang M 2014 Chin. Phys. Lett. 31 127501 | [3] | Tan Y, Fang Z, Chen W and He P 2010 Chin. Phys. B 19 097502 | [4] | Zhang Y, Cao E, Shi C and Hu J 2015 IEEE Int. Magn. Conf. (Beijing, 11–15 May 2015) p 1 | [5] | Gao D, Zhang Z, Fu J, Xu Y, Qi J and Xue D 2009 J. Appl. Phys. 105 113928 | [6] | Rajendar V, Raghu Y, Rajitha B, Chakra C S, Rao K V and Park S H 2017 J. Ovonic. Res. 13 101 | [7] | Chen J G, Guo C X, Zhang L L and Hu J T 2004 Chin. Phys. Lett. 21 1366 | [8] | Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019 | [9] | Cui J B and Gibson U J 2005 Appl. Phys. Lett. 87 133108 | [10] | Limaye M V, Singh S B, Das R Das R, Poddar P and Kulkarni S K 2011 J. Solid State Chem. 184 391 | [11] | Huang G J, Wang J B, Zhong X L, Zhou G C and Yan H L 2007 J. Mater. Sci. 42 6464 | [12] | Gautam S, Thakur P, Chae K H Chang G S, Subramanain M, Jayavel R and Asokan K 2009 J. Korean Phys. Soc. 55 167 | [13] | Venkatesan M, Fitzgerald C B and Coey J M D 2004 Nature 430 630 | [14] | Coey J M D, Venkatesan M, Stamenov P, Fitzgerald C B and Dorneles L S 2005 Phys. Rev. B 72 024450 | [15] | Hong N H, Sakai J, Poirot N and Brizé V 2006 Phys. Rev. B 73 132404 | [16] | Banerjee S, Mandal M, Gayathri N and Sardar M 2007 Appl. Phys. Lett. 91 182501 | [17] | Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U and Rao C N R 2006 Phys. Rev. B 74 161306 | [18] | Hoa Hong N, Sakai J and Brizé V 2007 J. Phys.: Condens. Matter 19 036219 | [19] | Wu T, Sun H, Hou X, Liu L, Zhang H and Zhang J 2014 Microporous Mesoporous Mater. 190 63 | [20] | Jing L, Yuan F, Hou H, Xin B, Cai W and Fu H 2005 Sci. Chin. Ser. B 48 25 | [21] | Kamarulzaman N, Kasim M F and Chayed N F 2016 Results Phys. 6 217 | [22] | Al-Gaashani R, Radiman S, Daud A R, Tabet N and Al-Douri Y 2013 Ceram. Int. 39 2283 | [23] | Aljawfi R N and Mollah S 2011 J. Magn. Magn. Mater. 323 3126 | [24] | Long T, Yin S, Takabatake K, Zhnag P and Sato T 2009 Nanoscale Res. Lett. 4 247 | [25] | Maeng J, Heo S, Jo G, Choe M, Kim S, Hwan, H and Lee T 2009 Nanotechnology 20 095203 | [26] | Bera S, Khan H, Biswas I and Jana S 2016 Appl. Surf. Sci. 383 165 | [27] | Xia Z, Wang Y, Fang Y, Wan Y, Xia W and Sha J 2011 J. Phys. Chem. C 115 14576 | [28] | Mccluskey M D and Jokela S J 2009 J. Appl. Phys. 106 071101 | [29] | Zhen W, Li B, Lu G and Ma J 2014 RSC Adv. 4 16472 | [30] | Zhou G, Wu T, Xie H and Zhang X 2013 Int. J. Hydrogen Energy 38 10012 | [31] | Wang J, Xia Y, Dong Y, Chena R, Xianga L and Komarneni S 2016 Appl. Catal. B 192 8 | [32] | Zhan P, Wang W, Liu C, Hu Y and Li Z 2012 J. Appl. Phys. 111 033501 | [33] | Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983 | [34] | Chang K, Xia J B and Peeters F M 2002 Phys. Rev. B 65 115209 | [35] | Wu H B, Chang K and Xia J B 2002 Phys. Rev. B 65 195204 | [36] | Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|