Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 065201    DOI: 10.1088/0256-307X/35/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effect of Hyper-Resistivity on Nonlinear Tearing Modes
Wen Yang1,2, Ding Li1,2**, Xue-qiao Xu3
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Cite this article:   
Wen Yang, Ding Li, Xue-qiao Xu 2018 Chin. Phys. Lett. 35 065201
Download: PDF(422KB)   PDF(mobile)(422KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analytically investigate nonlinear tearing modes with the anomalous electron viscosity or, as it is normally called, hyper-resistivity. In contrast to the flux average method used by previous work, we employ the standard singular perturbation technique and a quasilinear method to obtain the time evolution equation of tearing modes. The result that the magnetic flux grows with time in a scaling as $t^{2/3}$ demonstrates that nonlinear tearing modes with the hyper-resistivity effect alone have a weaker dependence on time than that of the corresponding resistive case.
Received: 26 March 2018      Published: 19 May 2018
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/065201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/065201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen Yang
Ding Li
Xue-qiao Xu
[1]Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
[2]Furth H, Rutherford P and Selberg H 1973 Phys. Fluids 16 1054
[3]Rutherford P H 1973 Phys. Fluids 16 1903
[4]White R B, Monticello D A, Rosenbluth M N et al 1977 Phys. Fluids 20 800
[5]Strauss H R 1986 Phys. Fluids 29 3668
[6]Kaw P K, Valeo E J and Rutherford P H 1979 Phys. Rev. Lett. 43 1398
[7]Aydemir A Y 1990 Phys. Fluids B: Plasma Phys. 2 2135
[8]Xu X Q, Dudson B, Snyder P B et al 2010 Phys. Rev. Lett. 105 175005
[9]Huang Y M, Bhattacharjee A and Forbes T G 2013 Phys. Plasmas 20 082131
[10]Vekstein G 2016 Phys. Plasmas 23 024502
[11]Schmidt J and Yoshikawa S 1971 Phys. Rev. Lett. 26 753
[12]Li D 1995 Phys. Plasmas 2 3275
[13]Cai H, Dou X and Li D 2010 Phys. Plasmas 17 032111
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 065201
[2] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 065201
[3] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 065201
[4] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 065201
[5] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 065201
[6] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 065201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 065201
[8] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 065201
[9] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 065201
[10] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 065201
[11] AZAM Hussain, GAO Bing-Xi, LIU Wan-Dong, XIE Jin-Lin, the EAST Team. Electron Cyclotron Emission Imaging Observations of m/n=1/1 and Higher Harmonic Modes during Sawtooth Oscillation in ICRF Heating Plasma on EAST[J]. Chin. Phys. Lett., 2015, 32(06): 065201
[12] XU Li-Qing, HU Li-Qun, CHEN Kai-Yun, LI Chang-Zheng, LI Er-Zhong, ZHAO Jin-Long, SHENG Xiu-Li, ZHANG Ji-Zong, MAO Song-Tao. Repetitive 'Snakes' and Their Damping Effect on Core Toroidal Rotation in EAST Plasmas with Multiple H–L–H Transitions[J]. Chin. Phys. Lett., 2014, 31(10): 065201
[13] SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, LU Wei. Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(07): 065201
[14] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 065201
[15] XU Li-Qing, HU Li-Qun, ZHANG Zi-Jun. Transient Appearance of Double Spontaneous-Snakes in EAST H Mode Plasma[J]. Chin. Phys. Lett., 2014, 31(03): 065201
Viewed
Full text


Abstract