Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 063201    DOI: 10.1088/0256-307X/35/6/063201
ATOMIC AND MOLECULAR PHYSICS |
Influence on the Lifetime of $^{87}$Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises
Peng Peng1,2, Liang-hui Huang1,2, Dong-hao Li1,2, Peng-jun Wang1,2, Zeng-ming Meng1,2, Jing Zhang1,2**
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Peng Peng, Liang-hui Huang, Dong-hao Li et al  2018 Chin. Phys. Lett. 35 063201
Download: PDF(656KB)   PDF(mobile)(652KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the influence of the phase noises of far detuning single frequency lasers on the lifetime of Bose–Einstein condensation (BEC) of $^{87}$Rb in an optical dipole trap. As a comparison, we shine a continuous-wave single-frequency Ti:sapphire laser, an external-cavity diode laser and a phase-locked diode laser on BEC. We measure the heating and lifetime of BEC in two different hyperfine states: $|F=2,m_{F}=2\rangle$ and $|F=1,m_{F}=1\rangle$. Due to the narrow linewidth and small phase noise, the continuous-wave single-frequency Ti:sapphire laser has less influence on the lifetime of $^{87}$Rb BEC than the external-cavity diode laser. To reduce the phase noise of the external-cavity diode laser, we use an optical phase-locked loop for the external-cavity diode laser to be locked on a Ti:sapphire laser. The lifetime of BEC is increased when applying the phase-locked diode laser in contrast with the external-cavity diode laser.
Received: 18 February 2018      Published: 19 May 2018
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  67.85.Jk (Other Bose-Einstein condensation phenomena)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301600 and 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11234008, 11474188 and 11704234, and the Fund for Shanxi '1331 Project' Key Subjects Construction.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/063201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/063201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Peng
Liang-hui Huang
Dong-hao Li
Peng-jun Wang
Zeng-ming Meng
Jing Zhang
[1]Anderson M H, Ensher J R, Mattews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2]Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3]Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[4]Bloch I 2008 Nature 453 1016
[5]Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[6]Fu Z C, Wang P J, Chai S J, Huang L H and Zhang J 2011 Phys. Rev. A 84 043609
[7]Zhang J Y, Ji S C, Chen Z, Zhong L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[8]Qu C, Hamner C, Gong M, Zhang C and Engels P 2013 Phys. Rev. A 88 021604
[9]Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H and Chen Y P 2014 Phys. Rev. A 90 13616
[10]Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[11]Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[12]Williams R A, Beeler M C, LeBlanc L J and Spielman I B 2013 Phys. Rev. Lett. 111 095301
[13]Burdick N Q, Tang Y and Lev B L 2016 Phys. Rev. X 6 031022
[14]Song B, He C, Zhang S, Hajiyev E, Huang W, Liu X J and Jo G B 2016 Phys. Rev. A 94 061604(R)
[15]Dresselhaus G 1955 Phys. Rev. 100 580
[16]Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[17]Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[18]Meng Z M, Huang L H, Li D H, Chen L C, Xu Y, Zhang C W, Wang P J and Zhang J 2016 Phys. Rev. Lett. 117 235304
[19]Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J and Pan J W 2016 Science 354 83
[20]Xiong D Z, Wang P J, Chai S J and Zhang J 2010 Chin. Opt. Lett. 8 627
[21]Chai S J, Wang P J, Fu Z K, Huang L H and Zhang J 2012 Acta Sin. Quantum. Opt. 18 171 (in Chinese)
[22]Xiong D Z, Wang P J, Fu Z K and Zhang J 2010 Opt. Express 18 1694
[23]Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843
[24]Meng Z M, Huang L H, Peng P, Chen L C, F H, Wang P J and Zhang J 2015 Acta Phys. Sin. 64 243202 (in Chinese)
[25]Weber T, Herbig J, Mark M, Naägerl H C and Grimm R 2003 Phys. Rev. Lett. 91 123201
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 063201
[2] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 063201
[3] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 063201
[4] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 063201
[5] CHEN Jie, ZHANG Hao, BAO Shan-Xia, WANG Li-Mei, ZHANG Lin-Jie, LI Chang-Yong, ZHAO Jian-Ming, JIA Suo-Tang. High-l Rydberg States' Interference Using a Double-Pulse Electric Field[J]. Chin. Phys. Lett., 2014, 31(2): 063201
[6] LONG Yun, XIONG Zhuan-Xian, ZHANG Xi, ZHANG Meng-Jiao, LÜ Bao-Long, HE Ling-Xiang. Observation of Photoassociation Spectra of Ultracold 174Yb Atoms at 1S03P1 Inter-Combination Line[J]. Chin. Phys. Lett., 2013, 30(7): 063201
[7] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 063201
[8] FAN Jian-Zhong, ZHANG Deng-Hong, CHANG Zhi-Wei, SHI Ying-Long, DONG Chen-Zhong. Energy-Crossing and Its Effect on Lifetime of the 4s24p 2P3/2 Level for Highly Charged Ga-Like Ions[J]. Chin. Phys. Lett., 2012, 29(7): 063201
[9] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 063201
[10] SHEN Li, WANG Lei, YANG Hai-Feng, LIU Xiao-Jun, LIU Hong-Ping** . Lifetime Measurement for 6snp Rydberg States of Barium[J]. Chin. Phys. Lett., 2011, 28(4): 063201
[11] WANG De-Hua. Corrigendum: “Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields”[J]. Chin. Phys. Lett., 2010, 27(8): 063201
[12] GAO Xiang, CHEN Shao-Hao, LI Jia-Ming,. Finite Space Complete Basis Method: Precision Computation of High-Resolution Spectrum near Ionization Threshold[J]. Chin. Phys. Lett., 2009, 26(1): 063201
[13] BIAN Xue-Bin, LIU Hong-Ping, SHI Ting-Yun. A Time-Dependent Approach to High-Resolution Photoabsorption Spectrum of Rydberg Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2008, 25(6): 063201
[14] LI Ji-Guang, DONG Chen-Zhong, DING Xiao-Bin. Resonance Energies, Absorption Oscillator Strengths and Ionization Potentials for the Element Hassium[J]. Chin. Phys. Lett., 2007, 24(1): 063201
[15] CHEN Shao-Hao, LI Jia-Ming,. Real-Space Wave-Packet Propagation Method: Application to Photoabsorption Processes of Hydrogen Atoms[J]. Chin. Phys. Lett., 2006, 23(10): 063201
Viewed
Full text


Abstract