Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 058901    DOI: 10.1088/0256-307X/35/5/058901
Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble
Jin-Fa Wang1, Xiao Liu1,2**, Hai Zhao1, Xing-Chi Chen1,3
1School of Computer Science and Engineering, Northeastern University, Shenyang 110819
2School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
3School of Electrical and Data Engineering, University of Technology Sydney, Sydney, Australia
Cite this article:   
Jin-Fa Wang, Xiao Liu, Hai Zhao et al  2018 Chin. Phys. Lett. 35 058901
Download: PDF(1041KB)   PDF(mobile)(1036KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ensemble learning for anomaly detection of data structured into a complex network has been barely studied due to the inconsistent performance of complex network characteristics and the lack of inherent objective function. We propose the intuitionistic fuzzy set (IFS)-based anomaly detection, a new two-phase ensemble method for anomaly detection based on IFS, and apply it to the abnormal behavior detection problem in temporal complex networks. Firstly, it constructs the IFS of a single network characteristic, which quantifies the degree of membership, non-membership and hesitation of each network characteristic to the defined linguistic variables so that makes the unuseful or noise characteristics become part of the detection. To build an objective intuitionistic fuzzy relationship, we propose a Gaussian distribution-based membership function which gives a variable hesitation degree. Then, for the fuzzification of multiple network characteristics, the intuitionistic fuzzy weighted geometric operator is adopted to fuse multiple IFSs and to avoid the inconsistence of multiple characteristics. Finally, the score function and precision function are used to sort the fused IFS. Finally, we carry out extensive experiments on several complex network datasets for anomaly detection, and the results demonstrate the superiority of our method to state-of-the-art approaches, validating the effectiveness of our method.
Received: 19 December 2017      Published: 30 April 2018
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.20.Ff (Computer science and technology)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61671142, and the Fundamental Research Funds for the Central Universities under Grant No 02190022117021.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jin-Fa Wang
Xiao Liu
Hai Zhao
Xing-Chi Chen
[1]Boccaletti S, Bianconi G, Criado R and Genio C I D 2014 Phys. Rep. 544 1
[2]Wang Z, Wang L, Szolnoki A and Perc M 2015 Eur. Phys. J. B 88 124
[3]Xiao W, Yang C, Yang Y P and Chen Y G 2017 Chin. Phys. Lett. 34 058901
[4]Zheng W, Pan Q, Sun C, Fan D Y, Zhao X K and Kang Z 2016 Chin. Phys. Lett. 33 038901
[5]Akoglu L, Tong H H and Koutra D 2015 Data Min. Knowl. Discov. 29 626
[6]Brown K S and Sethna J P 2003 Phys. Rev. E 68 021904
[7]Sun X Q, Shen H W, Cheng X Q and Zhang Y Q 2017 Physica A 473 1
[8]Alelyani S and Liu H 2012 11th Int. Conf. on Machine Learning and Applications (Boca Raton, United States 12–15 December 2012) p 588
[9]Zimek A, Campello R J and Sander J 2014 SIGKDD Explor. Newsl. 15 11
[10]Jiang X Y, Liu K, Yan J G and Chen W H 2012 Phys. Procedia 33 1093
[11]Krasichkov A S, Grigoriev E B, Bogachev M I and Nifontov E M 2015 Phys. Rev. E 92 042927
[12]Rayana S, Zhong W and Akoglu L 2016 IEEE 16th Int. Conf. on Data Mining (Barcelona, Spain 12–15 December) p 1167
[13]Yang Y, Hu H P, Xiong W and Chen J H 2010 Chin. Phys. Lett. 27 060501
[14]Hara S, Ono T, Okamoto R, Washio T and Takeuchi S 2014 Phys. Rev. A 89 022104
[15]Han Z J and Wang R C 2012 Phys. Procedia 25 2072
[16]Schubert E, Wojdanowski R, Zimek A and Kriegel H 2012 SIAM Int. Conf. Data Min. (Anaheim, United States 26–28 April) p 1047
[17]Rajagopalan V and Ray A 2006 Chin. Phys. Lett. 23 1951
[18]Rayana S and Akoglu L 2014 ACM SIGKDD Workshop ODD$^2$ (New York, United States 24–27 August) p 1
[19]Kavitha B, Subramanian K and Maybell S P 2011 Int. J. Adv. Sci. Eng. Inf. Technol. 2 99
[20]Zhu X Y, Liu Z H and Tang M 2007 Chin. Phys. Lett. 24 2142
[21]Atanassov K T 1986 Fuzzy Sets Syst. 20 87
[22]Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[23]Freeman L C 1977 Sociometry 40 35
[24]Berlingerio M, Koutra D, Eliassi-Rad T and Faloutsos C 2012 arXiv:1209.2684
[25]Watts D J and Strogatz S H 1998 Nature 393 440
[26]Wang J F, Jia S Y, Zhao H, Xu J Q and Lin C 2017 arXiv:1710.06121
[27]Armstrong J N, Felske J D and Chopra H D 2010 Phys. Rev. B 81 174405
[28]Xu Z S and Yager R R 2006 J. Intell. Mater. Syst. Struct. 35 417
[29]Eagle N and Pentland A 2006 Pers. Ubiquitous Comput. 10 255
[30]Garcia S, Grill M, Stiborek J and Zunino A 2014 Comput. Secur. 45 100
[31]Zhang Y Q and Li X 2013 Chaos 23 013131
[32]Chaira T 2011 Appl. Soft Comput. 11 1711
[33]Burillo P and Bustince H 1996 Fuzzy Sets Syst. 78 305
[34]Ai J, Zhao H, Kathleen M C, Su Z and Li H 2013 Chin. Phys. B 22 078902
[35]Hu B, Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901
[36]Chen S and Tan J 1994 Fuzzy Sets Syst. 67 163
[37]Hong D H and Choi C H 2000 Fuzzy Sets Syst. 114 103
[38]Wang J F, Zhao H, Liu X and Li H Q 2016 J. Northeastern University (Nat. Sci.) 37 12 (in Chinese)
[39]Gaston M E, Kraetzl M and Wallis W D 2006 Australasian J. Combinatorics 35 299
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 058901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 058901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 058901
[4] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 058901
[5] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 058901
[6] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 058901
[7] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 058901
[8] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 058901
[9] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 058901
[10] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 058901
[11] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 058901
[12] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 058901
[13] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 058901
[14] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 058901
[15] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 058901
Full text