CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Growth of $\beta$-Ga$_{2}$O$_{3}$ Films on Sapphire by Hydride Vapor Phase Epitaxy |
Ze-Ning XIONG, Xiang-Qian XIU**, Yue-Wen LI, Xue-Mei HUA, Zi-Li XIE, Peng CHEN, Bin LIU, Ping HAN, Rong ZHANG**, You-Dou ZHENG |
Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Ze-Ning XIONG, Xiang-Qian XIU, Yue-Wen LI et al 2018 Chin. Phys. Lett. 35 058101 |
|
|
Abstract Two-inch Ga$_{2}$O$_{3}$ films with ($\bar{2}$01)-orientation are grown on $c$-sapphire at 850–1050$^{\circ}\!$C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure $\beta$-Ga$_{2}$O$_{3}$ with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in $\beta$-Ga$_{2}$O$_{3}$ grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 eV.
|
|
Received: 08 January 2018
Published: 30 April 2018
|
|
PACS: |
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFB0404201, the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Center, PAPD, and the State Grid Shandong Electric Power Company. |
|
|
[1] | Tippins H H 1965 Phys. Rev. 140 A316 | [2] | Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217 | [3] | Higashiwaki M, Sasaki K, Kuramata A et al 2012 Appl. Phys. Lett. 100 013504 | [4] | Wong M H, Sasaki K, Kuramata A et al 2016 IEEE Electron Device Lett. 37 212 | [5] | Higashiwaki M, Sasaki K, Kuramata A et al 2014 Phys. Status Solidi A 211 21 | [6] | Ogita M, Saika N, Nakanishi Y et al 1999 Appl. Surf. Sci. 142 188 | [7] | Tomm Y, Ko J M, Yoshikawa A et al 2001 Sol. Energy Mater. Sol. Cells 66 369 | [8] | Aida H, Nishiguchi K, Takeda H et al 2008 Jpn. J. Appl. Phys. 47 8506 | [9] | Tomm Y, Reiche P, Klimm D and Fukuda T 2000 J. Cryst. Growth 220 510 | [10] | Sasaki K, Kuramata A, Masui T et al 2012 Appl. Phys. Express 5 035502 | [11] | Kim H W and Kim N H 2005 Appl. Phys. A 81 763 | [12] | Hellwig M, Xu K, Barreca D et al 2009 Eur. J. Inorg. Chem. 2009 1110 | [13] | Shinohara D and Fujita S 2008 Jpn. J. Appl. Phys. 47 7311 | [14] | Akaiwa K and Fujita S 2012 Jpn. J. Appl. Phys. 51 070203 | [15] | Orita M, Ohta H, Hirano M et al 2000 Appl. Phys. Lett. 77 4166 | [16] | Oshima Y, Víllora E G and Shimamura K 2015 J. Cryst. Growth 410 53 | [17] | Nikolaev V I et al 2016 Mater. Sci. Semicond. Process. 47 16 | [18] | Nakagomi S and Kokubun Y 2012 J. Cryst. Growth 349 12 | [19] | Nakagomi S and Kokubun Y 2013 Phys. Status Solidi A 210 1738 | [20] | Geller S 1960 J. Chem. Phys. 33 676 | [21] | Dohy D, Lucazeau G and Revcolevschi A 1982 J. Solid State Chem. 45 180 | [22] | Rao R, Rao A M, Xu B et al 2005 J. Appl. Phys. 98 094312 | [23] | Mengle K A, Shi G, Bayerl D et al 2016 Appl. Phys. Lett. 109 212104 | [24] | He H, Orlando R, Blanco M A et al 2006 Phys. Rev. B 74 195123 | [25] | Víllora E G, Atou T, Sekiguchi T et al 2001 Solid State Commun. 120 455 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|