Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054206    DOI: 10.1088/0256-307X/35/5/054206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber
Alabbas A. Al-Azzawi1,2, Aya A. Almukhtar1,2, P. H. Reddy3,4, D. Dutta3, S. Das3, A. Dhar3, M. C. Paul3**, U. N. Zakaria1, S. W. Harun1**
1Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
2Department of Computer Techniques Engineering, Al-Esra'a University College, Baghdad, Iraq
3Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
4Academy of Scientific and Innovative Research, CSIR-CGCRI Campus, Kolkata, India
Cite this article:   
Alabbas A. Al-Azzawi, Aya A. Almukhtar, P. H. Reddy et al  2018 Chin. Phys. Lett. 35 054206
Download: PDF(631KB)   PDF(mobile)(633KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An efficient and compact double-pass optical fiber amplifier is demonstrated using a newly developed hafnia bismuth erbium co-doped fiber (HBEDF) as a gain medium. The HBEDF is fabricated using a modified chemical vapor deposition in conjunction with solution doping. The fiber has an erbium ion concentration of 12500 ppm. At the optimum length of 0.5 m, the HBEDF amplifier (HBEDFA) achieves a flat gain of 26 dB with a gain variation of less than 1.5 dB within a wavelength region from 1530 to 1560 nm when the input signal and pump power are fixed at $-$30 dBm and 140 mW, respectively. On the other hand, at the input signal power of $-$10 dBm, the HBEDFA also achieves a flat gain of 14.2 dB with a gain variation of less than 2.5 dB within a wide wavelength region from 1525 to 1570 nm. Compared with the conventional zirconia erbium co-doped fiber based amplifier, the proposed HBEDFA obtains a more efficient gain and lower noise figure. For an input signal of $-$30 dBm, the gain improvements of 6.2 dB and 4.8 dB are obtained at 1525 nm and 1540 nm, respectively.
Received: 23 February 2018      Published: 30 April 2018
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.70.Hj (Laser materials)  
  42.60.-v (Laser optical systems: design and operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/054206       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/054206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alabbas A. Al-Azzawi
Aya A. Almukhtar
P. H. Reddy
D. Dutta
S. Das
A. Dhar
M. C. Paul
U. N. Zakaria
S. W. Harun
[1]Markom A M, Paul M C, Dhar A, Das S, Pal M, Bhadra S K, Dimyati K, Yasin M and Harun S W 2017 Optik (Munich Ger.) 132 75
[2]Cheng X S, Parvizi R, Ahmad H and Harun S W 2009 IEEE Photon. J. 1 259
[3]Abedin K S, Fini J M, Thierry T F, Zhu B, Yan M F, Bansal L, Dimarcello F V, Monberg E M and DiGiovanni D J 2014 Opt. Lett. 39 993
[4]Harun S W, Saat N K and Ahmad H 2005 IEICE Electron. Express 2 182
[5]Jianga S, Hwang B C, Luo T, Seneschal K, Smektala F, Honkanen S, Lucas J and Peyghambarian N 2000 Conf. Opt. Fiber Communication (Baltimore MD US, 7–10 March 2000) p 181
[6]Li P X et al 2016 Chin. Phys. B 25 084207
[7]Mori A 2008 J. Ceram. Soc. Jpn. 116 1040
[8]Cheng X S, Hamida B A, Naji A W, Ahmad H and Harun S W 2011 Laser Phys. Lett. 8 814
[9]Harun S W, Paul M C, Huri N A D, Hamzah A, Das S, Pal M, Bhadra S K, Ahmad H, Yoo S, Kalita M P, Boyl A J and Sahu J K 2011 Opt. Laser Technol. 43 1279
[10]Kir'yanov A V, Siddiki S H, Barmenkov Y O, Das S, Dutta D, Dhar A, Khakhalin A V, Sholokhov E M, Il'ichev N N, Didenko S I and Paul M C 2017 Opt. Mater. Express 7 2511
[11]Wood D L, Nassau K, Kometani T Y and Nash D L 1990 Appl. Opt. 29 604
[12]Paul M C, Harun S W, Huri N A D, Hamzah A, Das S, Pal M, Bhadra S K, Ahmad H, Yoo S, Kalita M P, Boyl A J and Sahu J K 2010 Opt. Lett. 35 2882
[13]Paul M C, Dhar A, Das S, Pal M, Bhadra S K, Markom A M, Rosli N S, Hamzah A, Ahmad H and Harun S W 2015 IEEE Photon. J. 7 1
Related articles from Frontiers Journals
[1] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 054206
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 054206
[3] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 054206
[4] B. Nizamani, S. Salam, A. A. A. Jafry, N. M. Zahir, N. Jurami, M. I. M. Abdul Khudus, A. Shuhaimi, E. Hanafi, S. W. Harun. Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser[J]. Chin. Phys. Lett., 2020, 37(5): 054206
[5] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 054206
[6] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 054206
[7] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 054206
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 054206
[9] Ying-Yi Li, Ke Yang, Gao-You Liu, Li-Wei Xu, Bao-Quan Yao, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan. A 1kHz Fe:ZnSe Laser Gain-Switched by a ZnGeP$_{2}$ Optical Parametric Oscillator at 77K[J]. Chin. Phys. Lett., 2019, 36(7): 054206
[10] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 054206
[11] Ying-Yi Li, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan, Chun-Fa Guo, Li-Wei Xu. A Gain-Switched Fe:ZnSe Laser Pumped by a Pulsed Ho,Pr:LLF Laser[J]. Chin. Phys. Lett., 2019, 36(4): 054206
[12] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 054206
[13] Teng Sun, Jian-Guo Xin, Yu-Chen Song. Laser-Diode Pumped Passive Q-Switched Laser with Quick Tunable Pulse-Width Capability[J]. Chin. Phys. Lett., 2019, 36(3): 054206
[14] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 054206
[15] Shang- Ming Ou, Guan-Yu Liu, Hui Lei, Zhi-Gang Zhang, Qing-Mao Zhang. Generation of 47fs Pulses from an Er:Fiber Amplifier[J]. Chin. Phys. Lett., 2017, 34(7): 054206
Viewed
Full text


Abstract