Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054204    DOI: 10.1088/0256-307X/35/5/054204
Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback
Hai-Sha Niu1, Lian-Qing Zhu1**, Jian-Jun Song2
1School of Instrument Science and Optoelectronic Engineering, Beijing Information Science & Technology University, Beijing 100191
2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song 2018 Chin. Phys. Lett. 35 054204
Download: PDF(1256KB)   PDF(mobile)(1251KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically. Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence.
Received: 24 February 2018      Published: 30 April 2018
PACS:  42.25.Hz (Interference)  
  42.25.Lc (Birefringence)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.25.Ja (Polarization)  
Fund: Supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT160R7.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hai-Sha Niu
Lian-Qing Zhu
Jian-Jun Song
[1]Keeley J, Dean P, Valavanis A et al 2015 Opt. Lett. 40 994
[2]Otsuka K 2015 Opt. Lett. 40 4603
[3]Zhu K Y, Guo B, Lu Y Y et al 2017 Optica 4 729
[4]Zhang P, Tan Y D, Liu N et al 2013 Opt. Lett. 38 4296
[5]Tan Y D, Zhang S L and Zhang Y N 2009 Opt. Express 17 13939
[6]Tan Y D, Zhang S L, Zhang S et al 2013 Sci. Rep. 3 2912
[7]Wu H, Zhang F, Liu T et al 2016 Opt. Lett. 41 2366
[8]Ramírez-Miquet E E, Perchoux J, Karine L et al 2016 Sensors 16 1233
[9]Fleisher A, Long D, Liu Q et al 2016 Phys. Rev. A 93 013833
[10]Ferrari G and Amabili M 2015 J. Sound Vib. 342 44
[11]Ruiz-Llata M and Lamela H 2009 Appl. Opt. 48 2915
[12]Cui L and Zhang S L 2005 Opt. Express 13 6558
[13]Fei L G, Zhang S L and Zong X B 2005 Opt. Commun. 246 505
[14]Wu Y, Tan Y D, Zhang S L et al 2013 Chin. Phys. Lett. 30 084201
[15]Lamb W E 1964 Phys. Rev. 134 A1429
[16]Liu W X, Liu M and Zhang S L 2008 Appl. Opt. 47 5562
[17]Wang W M, Boyle W J O and Grattan K T V 1993 Appl. Opt. 32 1551
[18]Yang S and Zhang S L 1988 Opt. Commun. 68 55
[19]Zhang S L, Guo H, Li K et al 1995 Opt. Lasers Eng. 23 1
[20]Li J, Tan Y D and Zhang S L 2015 Opt. Lett. 40 3615
[21]Tan Y D, Zhang S L, Xu C X et al 2013 Appl. Phys. Lett. 103 101909
[22]Tan Y D, Wang W P, Xu C X et al 2013 Sci. Rep. 3 2971
[23]Zhu J, Zhao Y and Jin G F 2008 Chin. Phys. B 17 2979
[24]Bolwign P T 1965 Appl. Phys. Lett. 7 252
Related articles from Frontiers Journals
[1] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 054204
[2] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 054204
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 054204
[4] Jie-Hui Huang, Tao Peng, Luo-Jia Wang, Shi-Yao Zhu. Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality[J]. Chin. Phys. Lett., 2018, 35(8): 054204
[5] Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 054204
[6] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 054204
[7] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 054204
[8] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 054204
[9] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 054204
[10] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 054204
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 054204
[12] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 054204
[13] LI Fu, Hashmi F. A., ZHANG Jun-Xiang, ZHU Shi-Yao. An Ideal Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2015, 32(5): 054204
[14] WEN Feng, ZHANG Xun, YUAN Chen-Zhi, LI Chang-Biao, WANG Jing-Da, ZHANG Yan-Peng. Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light[J]. Chin. Phys. Lett., 2015, 32(01): 054204
[15] XU Yuan, HUANG Yuan-Yuan, HU Ling, ZHANG Pei, WEI Dong, LI Hong-Rong, GAO Hong, LI Fu-Li. Measurement of Berry Phase Associated with Higher Dimensional Orbital Angular Momentum of Light by Interference Method[J]. Chin. Phys. Lett., 2013, 30(10): 054204
Full text