Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054203    DOI: 10.1088/0256-307X/35/5/054203
Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media
You-Quan Jia1, Qi Feng1, Bin Zhang1, Wei Wang2, Cheng-You Lin1**, Ying-Chun Ding1**
1College of Science, Beijing University of Chemical Technology, Beijing 100029
2China-Japan Friendship Hospital, Beijing 100029
Cite this article:   
You-Quan Jia, Qi Feng, Bin Zhang et al  2018 Chin. Phys. Lett. 35 054203
Download: PDF(869KB)   PDF(mobile)(862KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a digital micromirror device (DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields. Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMD-based superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
Received: 05 February 2018      Published: 30 April 2018
PACS:  42.25.-p (Wave optics)  
  42.30.-d (Imaging and optical processing)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Fx (Diffraction and scattering)  
  42.30.Kq (Fourier optics)  
Fund: Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091, and the National Natural Science Foundation of China under Grant No 21627813.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
You-Quan Jia
Qi Feng
Bin Zhang
Wei Wang
Cheng-You Lin
Ying-Chun Ding
[1]Rotter S and Gigan S 2017 Rev. Mod. Phys. 89 015005
[2]Cui M and Yang C 2010 Opt. Express 18 3444
[3]Papadopoulos I N, Farahi S, Moser C and Psaltis D 2012 Opt. Express 20 10583
[4]Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601
[5]Xie Y Y, Wang B Y, Cheng Z J, Yue Q Y and Guo C S 2017 Appl. Phys. Lett. 110 221105
[6]Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309
[7]Vellekoop I M and Mosk A P 2008 Opt. Commun. 281 3071
[8]Pang B Q, Wang S, Cheng T, Kong Q F, Wen L H and Yang P 2017 Chin. Phys. B 26 054204
[9]Mosk A P, Lagendijk A, Lerosey G and Fink M 2012 Nat. Photon. 6 283
[10]Chandrasekaran S N, Ligtenberg H, Steenbergen W and Vellekoop I M 2014 Proc. SPIE 8979 897905
[11]Vellekoop I M and Aegerter C M 2010 Proc. SPIE 7554 755430
[12]Cui M, McDowell E J and Yang C 2010 Opt. Express 18 25
[13]Akbulut D, Huisman T J, Putten E G van, Vos W L and Mosk A P 2011 Opt. Express 19 4017
[14]Ren Y X, Lu R D and Gong L 2015 Ann. Phys. 527 447
[15]Conkey D B, CaravacaAguirre A M and Piestun R 2012 Opt. Express 20 1733
[16]Zhang X and Kner P 2014 J. Opt. 16 125704
[17]Dremeau A, Liutkus A, Martina D, Katz O, Schuelke C, Krzakala F, Gigan S and Daudet L 2015 Opt. Express 23 11898
[18]Kim D, Moon J, Kim M, Yang T D, Kim J, Chung E and Choi W 2014 Opt. Lett. 39 1921
[19]Goorden S A, Bertolotti J and Mosk A P 2014 Opt. Express 22 17999
[20]Gong L, Qiu X Z, Ren Y X, Zhu H Q, Liu W W, Zhou J H, Zhong M C, Chu X X and Li Y M 2014 Opt. Express 22 26763
[21]Ren Y X, Fang Z X, Gong L, Gong K, Chen Y and Lu R D 2015 J. Appl. Phys. 117 133106
[22]Ren Y X, Fang Z X, Gong L, Huang K, Chen Y and Lu R D 2015 J. Opt. 17 125604
[23]Lee W H 1974 Appl. Opt. 13 1677
[24]Conkey D B, Brown A N, CaravacaAguirre A M and Piestun R 2012 Opt. Express 20 4840
[25]Feng Q, Zhang B, Liu Z P, Lin C Y and Ding Y C 2017 Appl. Opt. 56 3240
[26]Zhang B, Zhang Z F, Feng Q, Liu Z P, Lin C Y and Ding Y C 2018 J. Opt. 20 025601
[27]Putten E G van, Vellekoop I M and Mosk A P 2008 Appl. Opt. 47 2076
Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 054203
[2] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 054203
[3] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 054203
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 054203
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 054203
[6] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 054203
[7] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 054203
[8] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 054203
[9] DU Ying-Jie, XIE Xiao-Tao, YU Jin-Ying, BAI Jin-Tao. Kuznetsov–Ma Soliton in Coupled Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(07): 054203
[10] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 054203
[11] ZENG Xiang-Kai, WEI Lai. Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices[J]. Chin. Phys. Lett., 2012, 29(12): 054203
[12] LING Xiao-Hui, LUO Hai-Lu, TANG Ming, WEN Shuang-Chun. Enhanced and Tunable Spin Hall Effect of Light upon Reflection of One-Dimensional Photonic Crystal with a Defect Layer[J]. Chin. Phys. Lett., 2012, 29(7): 054203
[13] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 054203
[14] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 054203
[15] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 054203
Full text