Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054201    DOI: 10.1088/0256-307X/35/5/054201
Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW
Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li**, Ping Yan, Ma-Li Gong
Center for Photonics and Electronics, Department of Precision Instrument, Tsinghua University, Beijing 100084
Cite this article:   
Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang et al  2018 Chin. Phys. Lett. 35 054201
Download: PDF(1176KB)   PDF(mobile)(1174KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study internal features of fiber fuse in a Yb-doped double-clad fiber. The samples of fiber fuse are acquired at the power level of 3 kW in an all-fiber forward-pumped master oscillator power amplifier configuration fiber laser that is built specially for fiber fuse analyses. At this high power level, drastic refractive-index redistribution arises in an expended high refractive index area around the bullet-shaped voids of fiber fuse. Electron spin resonance analyses on post-fiber-fuse samples of the Yb-doped double-clad fiber indicate rising Frenkel defect concentration, meanwhile showing a new resonance center that is different from the ones of the Ge-doped fibers studied previously. This new resonance center probably suggests the generation of Al-oxygen hole center, a kind of defect formed during the catastrophic fuse process.
Received: 18 December 2017      Published: 30 April 2018
PACS:  42.81.-i (Fiber optics)  
  42.55.Wd (Fiber lasers)  
  71.55.-i (Impurity and defect levels)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61675114 and 11604177, the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics under Grant No 2014HEL02, and the Tsinghua University Initiative Scientific Research Program under Grant No 20151080709.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Qi-Rong Xiao
Jia-Ding Tian
Yu-Sheng Huang
Xue-Jiao Wang
Ze-Hui Wang
Dan Li
Ping Yan
Ma-Li Gong
[1]Kashyap R 2013 Opt. Express 21 6422
[2]Kashyap R and Blow K J 1988 Electron. Lett. 24 47
[3]Kashyap R 1988 Proc. Tenth Int. Conf. Lasers Appl. McLean VA 859
[4]Hand D P and Russell P St J 1988 Opt. Lett. 13 767
[5]Hand D P, Townsend J E and Russell P St J 1988 Digest of Conference on Lasers and Electro-Optics (Anaheim, US) p WJ1
[6]Atkins R M, Simpkins P G and Yablon A D 2003 Opt. Lett. 28 974
[7]Jiang S L, Ma L, Fan X Y et al 2016 Sci. Rep. 6 6
[8]Shuto Y, Yanagi S, Asakawa S et al 2004 IEEE J. Quantum Electron. 40 1113
[9]Hanzawa N, Kurokawa K, Tsujikawa K et al 2010 J. Lightwave Technol. 28 2115
[10]Mizuno Y, Hayashi N, Tanaka H et al 2014 Appl. Phys. Lett. 104 043302
[11]Wang J, Gray S, Walton D et al 2008 Asia Pac. Opt. Commun. Hangzhou Chin. 71342E
[12]Liao L, Liu P, Xing Y B et al 2015 Chin. Phys. Lett. 32 064201
[13]Zhang H, Zhou P, Wang X et al 2013 Conf. on Lasers and Electro-Optics/Pacific Rim (Kyoto, Japan, JETP) p WPD4
[14]Yan P, Yin S, He J et al 2011 IEEE Photon. Technol. Lett. 23 697
[15]Xiao Q R, Yan P, Li D et al 2016 Opt. Express 24 6758
[16]Wang X J, Xiao Q R, Yan P et al 2015 Acta Phys. Sin. B 24 164204 (in Chinese)
[17]Sun J Y, Xiao Q R, Li D et al 2016 Chin. Phys. B 25 014204
[18]Dianov E, Mashinsky V, Myzina V et al 1992 Sov. Lightwave Commun. 10 118
[19]Bufetov I A, Frolov A A, Shubin A V et al 2008 Quantum Electron. 38 441
[20]Hibino Y and Hanafusa H 1983 Jpn. J. Appl. Phys. 22 L766
[21]Hanafusa H, Hibino Y and Yamamoto F 1985 J. Appl. Phys. 58 1356
[22]Deschamps T, Vezin H, Gonnet C et al 2013 Opt. Express 21 8382
[23]Chah K, Boizot B, Reynard B et al 2002 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 191 337
Related articles from Frontiers Journals
[1] Peng-Fei Zhang, Li-Jun Song, Chang-Lin Zou, Xin Wang, Chen-Xi Wang, Gang Li, and Tian-Cai Zhang. Tunable Optical Bandpass Filter via a Microtip-Touched Tapered Optical Fiber[J]. Chin. Phys. Lett., 2020, 37(10): 054201
[2] Zhou-Xiang Wang, Yu-Chen Xie, Han Zhou, Shuang-Yin Huang, Min Wang, Rui Liu, Wen-Rong Qi, Qian-Qian Tian, Ling-Jun Kong, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Identifying the Symmetry of an Object Based on Orbital Angular Momentum through a Few-Mode Fiber[J]. Chin. Phys. Lett., 2019, 36(12): 054201
[3] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 054201
[4] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 054201
[5] Zian Cheak Tiu, Arman Zarei, Sin Jin Tan, Harith Ahmad, Sulaiman Wadi Harun. Q-Switching Pulse Generation with Thulium-Doped Fiber Saturable Absorber[J]. Chin. Phys. Lett., 2014, 31(12): 054201
[6] LI Qi, YAN Feng-Ping, PENG Wan-Jing, FENG Su-Chun, FENG Ting, TAN Si-Yu, LIU Peng. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber[J]. Chin. Phys. Lett., 2013, 30(2): 054201
[7] ZHENG Wan-Jun, CHENG Jian-Qun, RUAN Shuang-Chen**, ZHANG Min, LIU Wen-Li, YANG Xi, ZHANG Ying-Ying. A Switchable Multi-wavelength Erbium-Doped Photonic Crystal Fiber Laser with Linear Cavity Configuration[J]. Chin. Phys. Lett., 2012, 29(12): 054201
[8] Saman Q. Mawlud, Nahlah Q. Muhamad. Theoretical and Experimental Study of a Numerical Aperture for Multimode PCS Fiber Optics Using an Imaging Technique[J]. Chin. Phys. Lett., 2012, 29(11): 054201
[9] FENG Ting, YAN Feng-Ping, LI Qi, PENG Wan-Jing, FENG Su-Chun, WEN Xiao-Dong, LIU Peng, TAN Si-Yu. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure[J]. Chin. Phys. Lett., 2012, 29(10): 054201
[10] WANG Xiu-Lin, HUANG Wen-Cai, and CAI Zhi-Ping. Characteristics Improvement of L-Band Superfluorescent Fiber Source Using Unpumped Erbium-Doped Fiber[J]. Chin. Phys. Lett., 2012, 29(8): 054201
[11] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 054201
[12] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 054201
[13] LI Shu-Guang**, ZHOU Hong-Song, YIN Guo-Bing . Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2011, 28(11): 054201
[14] YAN Hai-Feng**, YU Zhong-Yuan, LIU Yu-Min, TIAN Hong-Da, HAN Li-Hong . Novel Propagation Properties of Total Internal Reflection Photonic Crystal Fibres with Rhombic Air Holes[J]. Chin. Phys. Lett., 2011, 28(11): 054201
[15] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 054201
Full text