Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 050401    DOI: 10.1088/0256-307X/35/5/050401
Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations
Jun Liang**
School of Arts and Sciences, Shannxi University of Science and Technology, Xi'an 710021
Cite this article:   
Jun Liang 2018 Chin. Phys. Lett. 35 050401
Download: PDF(623KB)   PDF(mobile)(627KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In our previous work [Chin. Phys. Lett. 35 (2018) 010410], the quasinormal modes of massless scalar field perturbation in a noncommutative-geometry-inspired Schwarzschild black hole spacetime are studied using the third-order Wentzel–Kramers–Brillouin approximative approach. In this study, we extend the work to the cases of gravitational, electromagnetic and massless Dirac perturbations. The result further confirms that the noncommutative parameter plays an important role for the quasinormal frequencies.
Received: 28 December 2017      Published: 30 April 2018
PACS:  04.70.-s (Physics of black holes)  
  04.30.-w (Gravitational waves)  
Fund: Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jun Liang
[1]Liang J 2018 Chin. Phys. Lett. 35 010401
[2]Nicolini P, Smailagic A and Spallucci E 2006 Phys. Lett. B 632 547
[3]Regge T and Wheeler J A 1957 Phys. Rev. 108 1063
[4]Iyer S 1987 Phys. Rev. D 35 3632
[5]Ruffini R, Tiomno J and Vishveshwara C 1972 Lett. Nuovo Cimento 3 211
[6]Molina C et al 2009 Phys. Rev. D 79 124026
[7]Brill D R and Wheeler J A 1957 Rev. Mod. Phys. 29 465
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 050401
[2] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 050401
[3] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 050401
[4] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 050401
[5] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 050401
[6] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 050401
[7] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 050401
[8] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 050401
[9] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 050401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 050401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 050401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 050401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 050401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 050401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 050401
Full text