CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings |
Hao-Jing Zhang1,3, Gai-Ge Zheng1,2,3**, Yun-Yun Chen1,2,3, Xiu-Juan Zou1,3, Lin-Hua Xu1,3 |
1Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044 2Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044 3School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044
|
|
Cite this article: |
Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen et al 2018 Chin. Phys. Lett. 35 038102 |
|
|
Abstract To achieve the enhancement and manipulation of light absorption in graphene within the visible and near infrared regions, a design consists of high-contrast gratings and two evanescently coupled slabs with graphene monolayer is demonstrated. The operation principle and design process of the proposed structure are analyzed using the coupled mode theory, which is confirmed by the rigorous coupled wave analysis. It is proved that the absorptance of graphene monolayer can be greatly enhanced to unity. The thickness of grating and slab layers can significantly change the line width and resonant mode position in the absorption spectra. Furthermore, high tunability in amplitude and bandwidth of the absorption spectra can be achieved by controlling the structural parameters of the hybrid structure. The proposed devices could be efficiently exploited as tunable and selective absorbers, and could be allowed to realize other two-dimensional materials-based selective photo-detectors.
|
|
Received: 18 December 2017
Published: 25 February 2018
|
|
PACS: |
81.05.ue
|
(Graphene)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 41675154, the Six Major Talent Peak Expert of Jiangsu Province under Grant No 2015-XXRJ-014, and the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425. |
|
|
[1] | Novoselov K S, Geim A K, Morozov S V et al 2004 Science 306 666 | [2] | Wang G, Long M Q and Zhang D 2017 Chin. Phys. Lett. 34 097303 | [3] | Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801 | [4] | Liu J T, Liu N H, Li J et al 2012 Appl. Phys. Lett. 101 052104 | [5] | Hu J H, Huang Y Q, Duan X F et al 2014 Appl. Phys. Lett. 105 221113 | [6] | Huang H L, Xia H, Guo Z B et al 2017 Chin. Phys. Lett. 34 117801 | [7] | Zhang H, Tang D Y, Zhao L M et al 2009 Opt. Express 17 17630 | [8] | Zheng Z W, Zhao C J and Lu S B 2012 Opt. Express 20 23201 | [9] | Ni Z Y, Ma L L, Du S C et al 2017 ACS Nano 11 9854 | [10] | Wang J G, Zhu M P, Sun J et al 2016 Opt. Mater. 62 227 | [11] | Piper J R and Fan S 2014 ACS Photon. 1 347 | [12] | Wang W, Klots A, Yang Y et al 2015 Appl. Phys. Lett. 106 181104 | [13] | Grande M, Vincenti M A, Stomeo T et al 2014 Opt. Express 22 31511 | [14] | Pirruccio G, Martín Moreno L, G Lozano G et al 2013 ACS Nano 7 4810 | [15] | Peng Y X, He M D, Li Z J et al 2017 Opt. Commun. 382 86 | [16] | Vasić B and Gajić R 2014 Opt. Lett. 39 6253 | [17] | Grande M, Vincenti M A, Stomeo T et al 2014 IEEE Photon. J. 6 1 | [18] | Vincenti M A, de D, Grande M et al 2013 Opt. Lett. 38 3550 | [19] | Gan X, Mak K F, Gao Y et al 2012 Nano Lett. 12 5626 | [20] | Echtermeyer T J, Britnell L, Jasnos P K et al 2011 Nat. Commun. 2 458 | [21] | Hashemi M, Farzad M H, Mortensen N A et al 2013 J. Opt. 15 055003 | [22] | Zhao B, Zhao J M and Zhang Z M 2014 Appl. Phys. Lett. 105 031905 | [23] | Zhao B, Zhao J M and Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176 | [24] | Zhao B and Zhang Z M 2015 ACS Photon. 2 1611 | [25] | Liu X, Chen S, Zang W et al 2011 Opt. Express 19 8233 | [26] | Zhu L X, Liu F Y, Lin H T et al 2016 Light: Sci. Appl. 5 e16052 | [27] | Guo C C, Z H, Yuan X D et al 2016 Adv. Opt. Mater. 4 1955 | [28] | Piper J R, Liu V and Fan S 2014 Appl. Phys. Lett. 104 251110 | [29] | Lee S, T Q Tran T Q, Heo H et al 2017 Sci. Rep. 7 4760 | [30] | Hu J H, Huang Y Q, Ren X M et al 2014 Chin. Phys. Lett. 31 064205 | [31] | Lu H, Gan X T, Jia B H et al 2016 Opt. Lett. 41 4743 | [32] | Zheng G G, Zhang H J, Xu L H et al 2016 Opt. Lett. 41 2274 | [33] | Zhang H, Virally S, Bao Q L et al 2012 Opt. Lett. 37 1856 | [34] | Wang J L, Fang H H and Wang X D 2017 Small 13 1700894 | [35] | Wang J L and Hu W D 2017 Chin. Phys. B 26 037106 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|