CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys |
Zhi-Dong Han1, Heng-Wei Luan1, Shao-Fan Zhao2, Na Chen1**, Rui-Xuan Peng1, Yang Shao1, Ke-Fu Yao1** |
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084 2Qian Xuesen Laboratory of Space Technology, Beijing 100094
|
|
Cite this article: |
Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao et al 2018 Chin. Phys. Lett. 35 036102 |
|
|
Abstract Effects of Ti addition on the microstructures and mechanical properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ ($x=0$, 0.25, 0.4, 0.5, 0.6, 0.75) high entropy alloys (HEAs) are investigated. All these HEAs of various Ti contents possess dual BCC structures, indicating that Ti addition does not induce the formation of any new phase in these alloys. As Ti addition $x$ varies from 0 to 0.75, the Vickers hardness (HV) of the alloy system increases from 623.7 HV to 766.2 HV, whereas the compressive yield stress firstly increases and then decreases with increasing $x$ above 0.5. Meanwhile, the compressive ductility of the alloy system decreases with Ti addition. The AlCrFeNiMo$_{0.5}$Ti$_{0.6}$ and AlCrFeNiMo$_{0.5}$Ti$_{0.75}$ HEAs become brittle and fracture with very limited plasticity. In the AlCrFeNiMo$_{0.5}$Ti$_{x}$ HEAs, the AlCrFeNiMo$_{0.5}$ HEA possesses the highest compressive fracture strength of 4027 MPa and the largest compressive plastic strain of 27.9%, while the AlCrFeNiMo$_{0.5}$Ti$_{0.5}$ HEA has the highest compressive yield strength of 2229 MPa and a compressive plastic strain of 10.1%. The combination of high strength and large plasticity of the AlCrFeNiMo$_{0.5}$Ti$_{x}$ ($x=0$, 0.25, 0.4, 0.5) HEAs demonstrates that this alloy system is very promising for engineering applications.
|
|
Received: 24 October 2017
Published: 25 February 2018
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51571127. |
|
|
[1] | Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299 | [2] | Zhou Y J, Zhang Y, Wang Y L and Chen G L 2007 Appl. Phys. Lett. 90 181904 | [3] | Dong Y, Lu Y P, Kong J R, Zhang J J and Li T J 2013 J. Alloys Compd. 573 96 | [4] | Liu S, Gao M C, Liaw P K and Zhang Y 2015 J. Alloys Compd. 619 610 | [5] | Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2010 Mater. Sci. Eng. A 527 6975 | [6] | Ding H Y, Shao Y, Gong P, Li J F and Yao K F 2014 Mater. Lett. 125 151 | [7] | Ding H Y and Yao K F 2013 J. Non-Cryst. Solids 364 9 | [8] | Han Z D, Liu X, Zhao S F, Shao Y, Li J F and Yao K F 2015 Prog. Nat. Sci.: Mater. Int. 25 365 | [9] | Zhao S F, Shao Y, Liu X, Chen N, Ding H Y and Yao K F 2015 Mater. Des. 87 625 | [10] | Zhao S F, Yang G N, Ding H Y and Yao K F 2015 Intermetallics 61 47 | [11] | Qiu X W, Zhang Y P and Liu C G 2014 J. Alloys Compd. 585 282 | [12] | Li J M, Yang X, Zhu R L and Zhang Y J 2014 Metals 4 597 | [13] | Qiu X W, Huang C X, Wu M J, Liu C G and Zhang Y P 2016 J. Alloys Compd. 658 1 | [14] | Liu C M, Wang H M, Zhang S Q, Tang H B and Zhang A L 2014 J. Alloys Compd. 583 162 | [15] | Chuang M H, Tsai M H, Wang W R, Lin S J and Yeh J W 2011 Acta Mater. 59 6308 | [16] | Hsu C Y, Sheu T S, Yeh J W and Chen S K 2010 Wear 268 653 | [17] | Yeh J W 2013 JOM 65 1759 | [18] | Ranganathan S 2003 Curr. Sci. 85 1404 | [19] | Tang Z, Yuan T, Tsai C W, Yeh J W, Lundin C D and Liaw P K 2015 Acta Mater. 99 247 | [20] | Wang Y P, Li B S and Fu H Z 2009 Adv. Eng. Mater. 11 641 | [21] | Tsai M H, Yuan H, Cheng G M, Xu W Z, Tsai K Y, Tsai C W, Jian W W, Juan C C, Shen W J, Chuang M H, Yeh J W and Zhu Y T 2013 Intermetallics 32 329 | [22] | Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Metall. Mater. Trans. A 35 2533 | [23] | Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H and Wei B B 2016 Chin. Phys. Lett. 33 116102 | [24] | Qiao J W, Ma S G, Huang E W, Chuang C P, Liaw P K and Zhang Y 2011 Mater. Sci. Forum 688 419 | [25] | Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2010 Mater. Sci. Eng. A 527 7210 | [26] | Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2011 J. Alloys Compd. 509 3476 | [27] | Ma S G and Zhang Y 2012 Mater. Sci. Eng. A 532 480 | [28] | Hsu C Y, Juan C C, Sheu T S, Chen S K and Yeh J W 2013 JOM 65 1840 | [29] | Hsu C Y, Wang W R, Tang W Y, Chen S K and Yeh J W 2010 Adv. Eng. Mater. 12 44 | [30] | Hsu C Y, Juan C C, Wang W R, Sheu T S, Yeh J W and Chen S K 2011 Mater. Sci. Eng. A 528 3581 | [31] | Juan C C, Hsu C Y, Tsai C W, Wang W R, Sheu T S, Yeh J W and Chen S K 2013 Intermetallics 32 401 | [32] | Yang X and Zhang Y 2012 Mater. Chem. Phys. 132 233 | [33] | Wang Z J, Huang Y H, Yang Y, Wang J C and Liu C T 2015 Scr. Mater. 94 28 | [34] | Guo S, Ng C, Lu J and Liu C T 2011 J. Appl. Phys. 109 103505 | [35] | Liu C T and Horton J A 1995 Mater. Sci. Eng. A 192-193 170 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|