FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array |
Meng Xun1**, Yun Sun1, Chen Xu2, Yi-Yang Xie2, Zhi Jin1, Jing-Tao Zhou1, Xin-Yu Liu1, De-Xin Wu1 |
1Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100083 2Key Laboratory of Optoelectronics Technology (Ministry of Education), Beijing University of Technology, Beijing 100124
|
|
Cite this article: |
Meng Xun, Yun Sun, Chen Xu et al 2018 Chin. Phys. Lett. 35 034202 |
|
|
Abstract Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1$\times$2 implant defined VCSEL arrays for optimum beam steering performance. Electronically controlled beam steering with a maximum deflection angle of 1.6$^{\circ}$ is successfully achieved in the 1$\times$2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
|
|
Received: 10 October 2017
Published: 25 February 2018
|
|
|
|
Fund: Supported by the 'Supporting First Action' Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302. |
|
|
[1] | Niven G and Mooradian A 2006 Proc. 13th International Display Workshops LAD2-2 (Otsu, Japan 6–8 December 2006) | [2] | Matsuda T, Abe F and Takahashi H 1978 Appl. Opt. 17 878 | [3] | Wu M C, Solgaard O and Ford J E 2006 J. Lightwave Technol. 24 4433 | [4] | Kozhenikov M, Basavanhally N R, Weld J D, Low Y L, Kolodner P, Bolle C A, Ryf R, Papazian A R, Olkhovets A, Pardo F, Kim J, Neilson D T, Aksyuk V A and Gates J V 2003 IEEE Photon. Technol. Lett. 15 993 | [5] | Bishop D J, Giles C R and Austin G P 2002 IEEE Commun. Mag. 40 75 | [6] | Okada H, Bos P J and Onnagawa H 1998 Jpn. J. Appl. Phys. 37 2576 | [7] | Mukai S, Watanabe M, Itoh H, Yajima H, Hosoi Y and Uekusa S 1985 Opt. Quantum Electron. 17 431 | [8] | Kurosaka Y, Iwahashi S, Liang Y, Sakai K, Miyai E, Kunishi W, Ohnishi D and Noda S 2010 Nat. Photon. 4 447 | [9] | Lehman A C and Choquette K D 2007 IEEE Photon. Technol. Lett. 19 1421 | [10] | Xun M, Xu C, Xie Y Y, Zhu Y X, Mao M M, Xu K, Wang J, Liu J and Chen H D 2014 Electron. Lett. 50 1085 | [11] | Xun M, Xu C, Deng J, Xie Y Y, Jiang G Q, Wang J, Xu K and Chen H D 2015 Opt. Lett. 40 2349 | [12] | Lehman A C, Siriani D F and Choquette K D 2007 Electron. Lett. 43 1203 | [13] | Johnson M T, Siriani D F, Sulkin J D and Choquette K D 2012 Appl. Phys. Lett. 101 031116 | [14] | Xun M, Xu C, Xie Y Y, Deng J, Xu K and Chen H D 2015 IEEE J. Quantum Electron. 51 2600106 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|