Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 116401    DOI: 10.1088/0256-307X/35/11/116401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System
Wang-Jun Lu, Zhen Li, Le-Man Kuang**
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control (Ministry of Education), Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
Cite this article:   
Wang-Jun Lu, Zhen Li, Le-Man Kuang 2018 Chin. Phys. Lett. 35 116401
Download: PDF(1308KB)   PDF(mobile)(1303KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate nonlinear Dicke quantum phase transition (QPT) induced by inter-atomic nonlinear interaction and its quantum witness in a cavity-Bose–Einstein-condensate (BEC) system. It is shown that inter-atomic nonlinear interaction in a cavity BEC system can induce first-order Dicke QPT. It is found that this nonlinear Dicke QPT can happen in an arbitrary coupling regime of the cavity and atoms. It is demonstrated that the quantum speed limit time can witness the Dicke QPT through its sudden change at the critical point of the QPT.
Received: 19 July 2018      Published: 23 October 2018
PACS:  64.70.Tg (Quantum phase transitions)  
  37.30.+i (Atoms, molecules, andions incavities)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775075 and 1143401.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/116401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/116401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wang-Jun Lu
Zhen Li
Le-Man Kuang
[1]Dicke R H 1954 Phys. Rev. 93 99
[2]Hepp K and Lieb E H 1973 Ann. Phys. (NY) 76 360
[3]Wang Y K and Hioes F T 1973 Phys. Rev. A 7 831
[4]Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[5]Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M and Esslinger T 2007 Nature 450 268
[6]Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[7]Emary C and Brandes T 2003 Phys. Rev. E 67 066203
[8]Nagy D, Kónya G, Szirmai G and Domokos P 2010 Phys. Rev. Lett. 104 130401
[9]Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[10]Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q and Jia S T 2011 Phys. Rev. A 83 033601
[11]Yuan J B and Kuang L M 2013 Phys. Rev. A 87 024101
[12]Li Y, Wang Z D and Sun C P 2006 Phys. Rev. A 74 023815
[13]Chen G, Wang X G, Liang J Q and Wang Z D 2008 Phys. Rev. A 78 023634
[14]Chen Q H, Liu T, Zhang Y Y and Wang K L 2010 Phys. Rev. A 82 053841
[15]Nagy D, Szirmai G and Domokos P 2011 Phys. Rev. A 84 043637
[16]Lu X Y, Zhu D L, Zheng L L and Wu Y 2018 Phys. Rev. A 97 033807
[17]Lu X Y, Zheng L L, Zhu D L and Wu Y 2018 Phys. Rev. Appl. 9 064006
[18]Mandelstam L and Tamm I 1945 J. Phys. USSR 9 249
[19]Margolus N and Levitin L B 1998 Physica D 120 188
[20]Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[21]Song Y J, Tan Q S and Kuang L M 2017 Sci. Rep. 7 43654
[22]Wei Y B, Zou J, Wang Z M and Shao B 2016 Sci. Rep. 6 19308
[23]Yuan J B, Lu W J and Kuang L M 2017 Sci. Rep. 7 7404
[24]Kuang L M, Chen Z B and Pan J W 2007 Phys. Rev. A 76 052324
[25]Kuang L M and Zhou L 2003 Phys. Rev. A 68 043606
[26]Zhou D L and Kuang L M 2009 Chin. Phys. B 18 1328
[27]Guo Y and Kuang L M 2008 Chin. Phys. B 6 1179
[28]Liao J Q and Kuang L M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1845
[29]Zhang H, Chen J L and Kuang L M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 11639
Related articles from Frontiers Journals
[1] Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He, and Zhong-Yi Lu. Framework for Contrastive Learning Phases of Matter Based on Visual Representations[J]. Chin. Phys. Lett., 2023, 40(2): 116401
[2] Long Zhang and Chengxiang Ding. Finite-Size Scaling Theory at a Self-Dual Quantum Critical Point[J]. Chin. Phys. Lett., 2023, 40(1): 116401
[3] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 116401
[4] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 116401
[5] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 116401
[6] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 116401
[7] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 116401
[8] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 116401
[9] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 116401
[10] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 116401
Viewed
Full text


Abstract