Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 017401    DOI: 10.1088/0256-307X/35/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy
Xuan Sun1,2, Wen-Tao Zhang1, Lin Zhao1, Guo-Dong Liu1, Gen-Da Gu3, Qin-Jun Peng4, Zhi-Min Wang4, Shen-Jin Zhang4, Feng Yang4, Chuang-Tian Chen4, Zu-Yan Xu4, Xing-Jiang Zhou1,2,5**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Xuan Sun, Wen-Tao Zhang, Lin Zhao et al  2018 Chin. Phys. Lett. 35 017401
Download: PDF(1483KB)   PDF(mobile)(1470KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carry out detailed momentum-dependent and temperature-dependent measurements on Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 ($T_{\rm c}=91$ K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard $d$-wave form ($\cos(2{\it \Phi}$)). It can be alternatively fitted by including a high-order term ($\cos(6{\it \Phi}$)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogap temperature without a signature of band reorganization which is distinct from that found in Bi$_2$Sr$_2$CuO$_{6+\delta}$ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.
Received: 20 November 2017      Published: 17 December 2017
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
  79.60.-i (Photoemission and photoelectron spectra)  
  74.72.Kf (Pseudogap regime)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300300, the National Natural Science Foundation of China under Grant No 11334010, the National Basic Research Program of China under Grant No 2015CB921300, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020300.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/017401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuan Sun
Wen-Tao Zhang
Lin Zhao
Guo-Dong Liu
Gen-Da Gu
Qin-Jun Peng
Zhi-Min Wang
Shen-Jin Zhang
Feng Yang
Chuang-Tian Chen
Zu-Yan Xu
Xing-Jiang Zhou
[1]Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[2]Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[3]Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[4]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[5]Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[6]Shen Z X, Dessau D S, Wells B O et al 1993 Phys. Rev. Lett. 70 1553
[7]Ding H, Norman M R, Campuzano J C et al 1996 Phys. Rev. B 54 R9678
[8]Vishik I M, Hashimoto M, He R H et al 2012 Proc. Natl. Acad. Sci. USA 109 18332
[9]Hashimoto M, Vishik I M, He R H et al 2014 Nat. Phys. 10 483
[10]Marshall D S, Dessau D S, Loeser A G et al 1996 Phys. Rev. Lett. 76 4841
[11]Loeser A G, Shen Z X, Dessau D S et al 1996 Science 273 325
[12]Ding H, Yokoya T, Campuzano J C et al 1996 Nature 381 51
[13]Hashimoto M, He R H, Tanaka K et al 2010 Nat. Phys. 6 414
[14]He R H, Hashimoto M, Karapetyan H et al 2011 Science 331 1579
[15]Liu G D, Wang G L, Zhu Y et al 2008 Rev. Sci. Instrum. 79 023105
[16]Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[17]Feng D L, Armitage N P, Lu D H et al 2001 Phys. Rev. Lett. 86 5550
[18]Bogdanov P V, Lanzara A, Zhou X J et al 2001 Phys. Rev. B 64 180505
[19]Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[20]Mesot J, Norman M R, Ding H et al 1999 Phys. Rev. Lett. 83 840
[21]Tanaka K, Lee W S, Lu D H et al 2006 Science 314 1910
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 017401
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 017401
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 017401
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 017401
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 017401
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 017401
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 017401
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 017401
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 017401
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 017401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 017401
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017401
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 017401
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 017401
[15] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 017401
Viewed
Full text


Abstract