CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy |
Xuan Sun1,2, Wen-Tao Zhang1, Lin Zhao1, Guo-Dong Liu1, Gen-Da Gu3, Qin-Jun Peng4, Zhi-Min Wang4, Shen-Jin Zhang4, Feng Yang4, Chuang-Tian Chen4, Zu-Yan Xu4, Xing-Jiang Zhou1,2,5** |
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2University of Chinese Academy of Sciences, Beijing 100049 3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA 4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 5Collaborative Innovation Center of Quantum Matter, Beijing 100871
|
|
Cite this article: |
Xuan Sun, Wen-Tao Zhang, Lin Zhao et al 2018 Chin. Phys. Lett. 35 017401 |
|
|
Abstract We carry out detailed momentum-dependent and temperature-dependent measurements on Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 ($T_{\rm c}=91$ K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard $d$-wave form ($\cos(2{\it \Phi}$)). It can be alternatively fitted by including a high-order term ($\cos(6{\it \Phi}$)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogap temperature without a signature of band reorganization which is distinct from that found in Bi$_2$Sr$_2$CuO$_{6+\delta}$ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.
|
|
Received: 20 November 2017
Published: 17 December 2017
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
74.72.Kf
|
(Pseudogap regime)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300300, the National Natural Science Foundation of China under Grant No 11334010, the National Basic Research Program of China under Grant No 2015CB921300, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020300. |
|
|
[1] | Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969 | [2] | Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61 | [3] | Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 | [4] | Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 | [5] | Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 | [6] | Shen Z X, Dessau D S, Wells B O et al 1993 Phys. Rev. Lett. 70 1553 | [7] | Ding H, Norman M R, Campuzano J C et al 1996 Phys. Rev. B 54 R9678 | [8] | Vishik I M, Hashimoto M, He R H et al 2012 Proc. Natl. Acad. Sci. USA 109 18332 | [9] | Hashimoto M, Vishik I M, He R H et al 2014 Nat. Phys. 10 483 | [10] | Marshall D S, Dessau D S, Loeser A G et al 1996 Phys. Rev. Lett. 76 4841 | [11] | Loeser A G, Shen Z X, Dessau D S et al 1996 Science 273 325 | [12] | Ding H, Yokoya T, Campuzano J C et al 1996 Nature 381 51 | [13] | Hashimoto M, He R H, Tanaka K et al 2010 Nat. Phys. 6 414 | [14] | He R H, Hashimoto M, Karapetyan H et al 2011 Science 331 1579 | [15] | Liu G D, Wang G L, Zhu Y et al 2008 Rev. Sci. Instrum. 79 023105 | [16] | Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154 | [17] | Feng D L, Armitage N P, Lu D H et al 2001 Phys. Rev. Lett. 86 5550 | [18] | Bogdanov P V, Lanzara A, Zhou X J et al 2001 Phys. Rev. B 64 180505 | [19] | Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093 | [20] | Mesot J, Norman M R, Ding H et al 1999 Phys. Rev. Lett. 83 840 | [21] | Tanaka K, Lee W S, Lu D H et al 2006 Science 314 1910 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|