Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 016402    DOI: 10.1088/0256-307X/35/1/016402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Four Types of Percolation Transitions in the Cluster Aggregation Network Model
Wen-Chen Han, Jun-Zhong Yang**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Wen-Chen Han, Jun-Zhong Yang 2018 Chin. Phys. Lett. 35 016402
Download: PDF(538KB)   PDF(mobile)(530KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the percolation transition in a one-species cluster aggregation network model, in which the parameter $\alpha$ describes the suppression on the cluster sizes. It is found that the model can exhibit four types of percolation transitions, two continuous percolation transitions and two discontinuous ones. Continuous and discontinuous percolation transitions can be distinguished from each other by the largest single jump. Two types of continuous percolation transitions show different behaviors in the time gap. Two types of discontinuous percolation transitions are different in the time evolution of the cluster size distribution. Moreover, we also find that the time gap may also be a measure to distinguish different discontinuous percolations in this model.
Received: 15 September 2017      Published: 17 December 2017
PACS:  64.60.ah (Percolation)  
  64.60.aq (Networks)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11575036 and 11505016.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/016402       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/016402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Chen Han
Jun-Zhong Yang
[1]Stauffer D and Aharony A 1994 Introduction to Percolation Theory (London: Taylor & Francis)
[2]Bastas N, Giazitzidis P, Maragakis M and Kosmidis K 2014 Physica A 407 54
[3]Araújo N, Grassberger P, Kahng B, Schrenk K J and Ziff R M 2014 Eur. Phys. J. Spec. Top. 233 2307
[4]Saberi A A 2015 Phys. Rep. 578 1
[5]D'Souza R M and Nagler J 2015 Nat. Phys. 11 531
[6]Rozenfield H D, Gallos L K and Malse H A 2010 Eur. Phys. J. B 75 305
[7]Liu M X, Fan J F, Li L S and Chen X S 2012 Eur. Phys. J. B 85 132
[8]Li Z W, Liu H J and Xu X 2013 Acta Phys. Sin. 62 0964101 (in Chinese)
[9]Jiao X, Hong J S, Yang H C, Yang C, Shi X H and Hu J Q 2014 Chin. Phys. B 23 076401
[10]Li L and Li K F 2015 Acta Phys. Sin. 64 136402 (in Chinese)
[11]Lee H K, Kim B J and Park H 2011 Phys. Rev. E 84 020101(R)
[12]Erdös P and Rényi A 1960 Publ. Math. 5 17
[13]Achlioptas D, D'Souza R M and Sperncer J 2009 Science 323 1453
[14]da Costa R A, Dorogovtsev S N, Goltsev A V and Mendes J F F 2010 Phys. Rev. Lett. 105 255701
[15]Riodan O and Warnke L 2011 Science 333 322
[16]Cho Y S, Hwang S, Herrmann H J and Kahng B 2013 Science 339 1185
[17]Chen W, Nagler J, Cheng X, Jin X, Shen H, Zheng Z and D'Souza R M 2013 Phys. Rev. E 87 052130
[18]Cho Y S, Kim J S, Park J, Kahng B and Kim D 2009 Phys. Rev. Lett. 103 135702
[19]Radicchi F and Fortunato S 2009 Phys. Rev. Lett. 103 168701
[20]Boettcher S, Singh V and Ziff R M 2012 Nat. Commun. 3 787
[21]Cho Y S, Lee J S, Herman H J and Kahng B 2016 Phys. Rev. Lett. 116 025701
[22]Cho Y S, Kahng B and Kim D 2010 Phys. Rev. E 81 030103(R)
[23]Manna S S and Chatterjee A 2011 Physica A 390 177
[24]Nagler J, Levina A and Timme M 2011 Nat. Phys. 7 265
[25]Chen W and D'Souza R M 2011 Phys. Rev. Lett. 106 115701
[26]Nagler J, Tiessen T and Gutch H W 2012 Phys. Rev. X 2 031009
[27]Cho Y S and Kahng B 2015 Sci. Rep. 5 11905
[28]Ziff R M 2010 Phys. Rev. E 82 051105
[29]Schrenk K J, Felder A, Deflorin S, Araújo N A M, D'Souza R M and Herrmann H J 2012 Phys. Rev. E 85 031103
Related articles from Frontiers Journals
[1] JIA Xiao, HONG Jin-Song, YANG Hong-Chun, YANG Chun, FU Chuan-Ji, HU Jian-Quan, SHI Xiao-Hong. Percolation Transitions of Random Networks under a Weight Probability Function[J]. Chin. Phys. Lett., 2015, 32(01): 016402
Viewed
Full text


Abstract