CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Surface Carbonization of GaN and the Related Structure Evolution during the Annealing Process |
Jin-Long Liu1, Liang-Xian Chen1, Jun-Jun Wei1, Li-Fu Hei1, Xu Zhang2, Cheng-Ming Li1** |
1Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing 100875
|
|
Cite this article: |
Jin-Long Liu, Liang-Xian Chen, Jun-Jun Wei et al 2018 Chin. Phys. Lett. 35 016101 |
|
|
Abstract To explain the stabilization mechanism of the carbon-ion-implanted GaN under the diamond growth environment, the luminescence characteristics and structure evolution correlative with sites' carbon atoms located for high-fluence carbon-ion-implanted GaN are discussed. GaN is implanted with carbon ion using fluence of $2\times10^{17}$ cm$^{-2 }$ and energy of 45 keV. Then the implanted samples are annealed at 800$^{\circ}\!$C for 20 min and 1 h under the N$_{2}$ atmosphere. The luminescence characteristics of carbon-ion-implanted GaN are evaluated by photoluminescence spectrum at wavelength 325 nm. The lattice damage of GaN is characterized by Raman spectrum and the corresponding vacancy-defect evolution before and after annealing is measured by slow positron annihilation. The results show that most of the carbon atoms will be located at the interstitial sites after carbon ion implantation due to the weak mobility. As the implanted samples are annealed, strong yellow luminescence is emitted and the vacancies for Ga (V$_{\rm Ga})$ are reduced resulting from the migration of interstitial carbon (C$_{\rm i})$ and formation of complexes (C$_{\rm Ga}$ and/or C$_{\rm Ga}$-C$_{\rm i}$) between them. As the annealing time is prolonged, the carbon ions accommodated by the vacancies are saturated, vacancy clusters with carbon atoms appear and the concentration of C$_{\rm Ga}$ diminishes, which will have an adverse effect on the diamond film nucleation and growth.
|
|
Received: 21 September 2017
Published: 17 December 2017
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51402013, the National Key Research and Development Program of China under Grant No 2016YFE0133200, and the European Union's Horizon 2020 Research and Innovation Staff Exchange Scheme under Grant No 734578. |
|
|
[1] | Nakamura S 1998 Science 281 956 | [2] | Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L and Wang Z G 2017 Chin. Phys. Lett. 34 047301 | [3] | Khan A, Balakrishnan K and Katonan T 2006 Nat. Phys. 2 77 | [4] | Sarazin N, Morvan E, di Forte Poisson M A, Qualli M, Gaquiere C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2010 IEEE Electron Device Lett. 31 11 | [5] | Liu Z, Yang H, Yi X, Fu B, Yuan G, Wang J, Li J and Zhang Y 2016 Sci. Rep. 6 32033 | [6] | Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H, Pomeroy J, Verbeeck J, Haenen K and Kuball M 2017 Appl. Phys. Lett. 111 041901 | [7] | del Alamo J A, Guo A and Warnock S 2017 J. Mater. Res. 32 3458 | [8] | Goyal V, Sumant A V, Teweldebrhan D and Balandin A A 2012 Adv. Funct. Mater. 22 1525 | [9] | May P W, Tsai H Y, Wang W N and Smith J A 2006 Diamond Relat. Mater. 15 526 | [10] | Zou Y S, Yang Y, Chong Y M, Ye Q, He B, Yao Z Q, Zhang W J, Lee S T, Cai Y and Chu H S 2008 Cryst. Growth Des. 8 1770 | [11] | Hageman P R, Schermer J J and Larsen P K 2003 Thin Solid Films 443 9 | [12] | Liu J L, Li C M, Chen L X, Guo J C, Yan X B, Wei J J and Hei L F 2016 Chinese Patent ZL201410498719.2 | [13] | Wang L J, Xia Y B, Fang Z J, Zhang M L and Shen H J 2004 Chin. Phys. Lett. 21 1161 | [14] | Fang Z Q, Claflin B, Look D C, Green D S and Vetury R 2010 J. Appl. Phys. 108 063706 | [15] | Lyons J L, Janotti A and van de Walle C G 1953 Phys. Rev. B 89 331 | [16] | Lyons J L, Janotti A and van de Walle C G 2010 Appl. Phys. Lett. 97 152108 | [17] | Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park S J, Hong B H, Kahng Y H and Lee T 2010 Nanotechnology 21 175201 | [18] | Tuomisto F and Makkonen I 2013 Rev. Mod. Phys. 85 1583 | [19] | Nykänen H, Suihkonen S, Kilanski L, Sopanen M and Tuomisto F 2012 Appl. Phys. Lett. 100 122105 | [20] | Wang M J, Yuan L, Cheng C C, Beling C D and Chen K J 2009 Appl. Phys. Lett. 94 061910 | [21] | Armitage R, Hong W, Yang Q, Feick H, Gebauer J and Weber E R 2003 Appl. Phys. Lett. 82 3457 | [22] | Kucheyev S O, Williams J S and Zou J 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 178 209 | [23] | Yuan L, Wang M J and Chen K J 2008 J. Appl. Phys. 104 116106 | [24] | Kucheyev S O, Bradby J E, Li C P, Ruffell S, van Buuren T and Felter T E 2007 Appl. Phys. Lett. 91 261905 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|