Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 013201    DOI: 10.1088/0256-307X/35/1/013201
ATOMIC AND MOLECULAR PHYSICS |
Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model
Guang Yang, Wei Li, Li-Xiang Cen**
Center of Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065
Cite this article:   
Guang Yang, Wei Li, Li-Xiang Cen 2018 Chin. Phys. Lett. 35 013201
Download: PDF(455KB)   PDF(mobile)(452KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangent-pulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse.
Received: 10 November 2017      Published: 17 December 2017
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/013201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/013201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guang Yang
Wei Li
Li-Xiang Cen
[1]Nakamura H 2012 Nonadiabatic Transitions: Concepts, Basic Theories and Applications (Singapore: World Scientific)
[2]Nitzan A 2006 Chemical Dynamics in Condensed Phases (Oxford: Oxford University Press)
[3]Landau L D 1932 Phys. Z. Sowjetunion 2 46
[4]Zener C 1932 Proc. R. Soc. A 137 696
[5]Demkov Y N and Osherov V I 1967 Zh. Exp. Teor. Fiz. 53 1589
[6]Brundobler S and Elser V 1993 J. Phys. A 26 1211
[7]Ostrovsky V N and Nakamura H 1997 J. Phys. A 30 6939
[8]Demkov Y N and Ostrovsky V N 2000 Phys. Rev. A 61 032705
[9]Rangelov A A, Piilo J and Vitanov N V 2005 Phys. Rev. A 72 053404
[10]Sinitsyn N A 2015 J. Phys. A 48 195305
[11]Patra A and Yuzbashyan E A 2015 J. Phys. A 48 245303
[12]Bharucha C F et al 1997 Phys. Rev. A 55 R857
[13]Saito K et al 2006 Europhys. Lett. 76 22
[14]Guerin S et al 2011 Phys. Rev. A 84 013423
[15]Malossi N et al 2013 Phys. Rev. A 87 012116
[16]Sinitsyn N A 2002 Phys. Rev. B 66 205303
[17]Saito K and Kayanuma Y 2004 Phys. Rev. B 70 201304
[18]Cao G et al 2013 Nat. Commun. 4 1401
[19]Oliver W D et al 2005 Science 310 1653
[20]Berns D M et al 2006 Phys. Rev. Lett. 97 150502
[21]Sillanpää M et al 2006 Phys. Rev. Lett. 96 187002
[22]Quintana C M et al 2013 Phys. Rev. Lett. 110 173603
[23]Boscain U et al 2002 J. Math. Phys. 43 2107
[24]Hicke C et al 2006 Phys. Rev. A 73 012342
[25]Torosov B T et al 2011 Phys. Rev. Lett. 106 233001
[26]Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937
[27]Demirplak M and Rice S A 2008 J. Chem. Phys. 129 154111
[28]Zhang J et al 2013 Phys. Rev. Lett. 110 240501
[29]Sun Z et al 2016 Phys. Rev. A 93 012121
[30]The same idea that makes use of an additional interaction to eliminate the nonadiabatic effect has ever been exploited in the scheme of the holonomic quantum computation, see Ref. [36]
[31]Berry M V 2009 J. Phys. A 42 365303
[32]Chen X et al 2010 Phys. Rev. Lett. 105 123003
[33]Martínez-Garaot S et al 2014 Phys. Rev. A 89 053408
[34]Wang S J 1990 Phys. Rev. A 42 5107
[35]Wang S J et al 1993 Phys. Lett. A 180 189
[36]Cen L X et al 2003 Phys. Rev. Lett. 90 147902
[37]Bason M G et al 2012 Nat. Phys. 8 147
Related articles from Frontiers Journals
[1] ChunMei Liu, Jörn Manz, Huihui Wang, and Yonggang Yang. Quantum Engineering of Helical Charge Migration in HCCI[J]. Chin. Phys. Lett., 2022, 39(12): 013201
[2] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 013201
[3] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 013201
[4] Junyang Yuan, Yixuan Ma, Renyuan Li, Huanyu Ma, Yizhu Zhang, Difa Ye, Zhenjie Shen, Tianmin Yan, Xincheng Wang, Matthias Weidemüller, Yuhai Jiang. Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field[J]. Chin. Phys. Lett., 2020, 37(5): 013201
[5] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 013201
[6] Peng-Ju Tang, Peng Peng, Xiang-Yu Dong, Xu-Zong Chen, Xiao-Ji Zhou. Implementation of Full Spin-State Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 013201
[7] Wen-Jing Cheng, Shi-Hua Zhao. Simulation of Intermediate State Absorption Enhancement in Rare-Earth Ions by Polarization Modulated Femtosecond Laser Field[J]. Chin. Phys. Lett., 2018, 35(11): 013201
[8] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 013201
[9] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 013201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 013201
[11] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 013201
[12] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 013201
[13] GONG Shi-Jie, ZHOU Fei, WU Hao-Yu, WAN Wei, CHEN Liang, FENG Mang. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion[J]. Chin. Phys. Lett., 2015, 32(01): 013201
[14] CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 013201
[15] NIU Zhen-Xia, XUE Ju-Kui. Selective Tunneling Dynamics of Bosons with Effective Three-Particle Interactions[J]. Chin. Phys. Lett., 2014, 31(10): 013201
Viewed
Full text


Abstract