Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 010401    DOI: 10.1088/0256-307X/35/1/010401
GENERAL |
Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole
Jun Liang**
School of Arts and Sciences, Shannxi University of Science and Technology, Xi'an 710021
Cite this article:   
Jun Liang 2018 Chin. Phys. Lett. 35 010401
Download: PDF(430KB)   PDF(mobile)(407KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quasinormal modes (QNMs) of massless scalar field perturbation in a noncommutative-geometry-inspired Schwarzschild black hole spacetime are studied using the third-order Wentzel–Kramers–Brillouin approximative approach. The result shows that the noncommutative parameter plays an important role for the quasinormal (QNM) frequencies.
Received: 18 August 2017      Published: 17 December 2017
PACS:  04.70.-s (Physics of black holes)  
  04.30.-w (Gravitational waves)  
Fund: Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/010401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/010401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Liang
[1]Hawking S W 2005 Phys. Rev. D 72 084013
[2]Nicolini P, Smailagic A and Spallucci E 2006 Phys. Lett. B 632 547
[3]Ansoldi S et al 2007 Phys. Lett. B 645 261
[4]Modestic L and Nicolini P 2010 Phys. Rev. D 82 104035
[5]Rizzo T G 2006 J. High Energy Phys. 0609 021
[6]Spallucci E, Nicolini P and Smailagic A 2009 Phys. Lett. B 670 449
[7]Nozari K and Mehdipour S H 2008 Class. Quantum Grav. 25 175015
[8]Nozari K and Mehdipour S H 2009 J. High Energy Phys. 0903 061
[9]Mehdipour S H 2010 Mod. Phys. Lett. A 25 5543
[10]Mehdipour S H 2010 Phys. Rev. D 81 124049
[11]Giri P R 2007 Int. J. Mod. Phys. A 22 2047
[12]Ding C, Kang S and Chen C Y 2011 Phys. Rev. D 83 084005
[13]Ding C and Jing J 2011 J. High Energy Phys. 1110 052
[14]Myung Y S, Kim Y W and Park Y J 2007 J. High Energy Phys. 0702 012
[15]Banerjee R, Majhi B R and Samanta S 2008 Phys. Rev. D 77 124035
[16]Myung Y S and Yoon M 2009 Eur. Phys. J. C 62 405
[17]Nicolini P and Torrieri G 2011 J. High Energy Phys. 1108 097
[18]Tejeiro J M and Larranage A 2012 Pramana 78 1
[19]Liang J and Liu B 2012 Europhys. Lett. 100 30001
[20]Liang J 2014 Res. Astron. Astrophys. 14 77
[21]Liang J, Liu Y C and Zhu Q 2014 Chin. Phys. C 38 025101
[22]Liang J et al 2017 Gen. Relativ. Gravit. 49 29
[23]Liang J 2017 Chin. Phys. Lett. 34 080402
[24]Nicolini P 2009 Int. J. Mod. Phys. A 24 1229
[25]Vishveshwara C V 1970 Nature 227 936
[26]Press W H 1971 Astrophys. J. 170 L105
[27]Blome H J and Mashhood B 1985 Phys. Lett. A 110 231
[28]Schutz B F and Will C M 1985 Astrophys. J. 291 L33
[29]Iyer S and Will C M 1987 Phys. Rev. D 35 3621
[30]Iyer S 1987 Phys. Rev. D 35 3632
[31]Konoplya R A 2003 Phys. Rev. D 68 024018
[32]Nollert H P and Schmidt B G 1992 Phys. Rev. D 45 2617
[33]Froeman N 1992 Phys. Rev. D 45 2609
[34]Gundlach C, Price R H and Pullin J 1994 Phys. Rev. D 49 883
[35]Motl L and Neitzke A 2003 Adv. Theor. Math. Phys. 7 307
[36]Kokkotas K D and Schmidt B G 1999 Living Rev. Relativ. 2 2
[37]Berti E, Cardoso V and Starinets A C 2009 Class. Quantum Grav. 26 163001
[38]Konoplya R A and Zhidenkc A 2011 Rev. Mod. Phys. 83 793
[39]Zhidenko A 2004 Class. Quantum Grav. 21 273
[40]Zhang H et al 2004 Class. Quantum Grav. 21 917
[41]Shu F W and Shen Y G 2004 Phys. Rev. D 70 084046
[42]Shu F W and Shen Y G 2005 Phys. Lett. B 614 195
[43]Shu F W and Shen Y G 2005 Phys. Lett. B 619 340
[44]Cheng S and Jing J 2005 Class. Quantum Grav. 22 4651
[45]Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141
[46]Chen S, Wang B and Su R 2006 Class. Quantum Grav. 23 7581
[47]Chakrabarti S K 2007 Gen. Relativ. Gravit. 39 567
[48]Zhang Y et al 2007 Gen. Relativ. Gravit. 39 1003
[49]Chen S, Wang B and Su R 2008 Int. J. Mod. Phys. D 23 2505
[50]Lópze-Ortega A 2008 Gen. Relativ. Gravit. 40 1379
[51]Zhang Y et al 2009 Chin. Phys. Lett. 26 030401
[52]Varghese N and Kuriakose V C 2009 Gen. Relativ. Gravit. 41 1249
[53]Chakrabarti S K 2009 Eur. Phys. J. C 61 477
[54]Piedra O P F and de J 2010 Int. J. Mod. Phys. D 19 63
[55]Decanini Y, Folacci A and Raffaelli B 2010 Phys. Rev. D 81 104039
[56]Saleh M, Thomas B B and Kofane T C 2011 Astrophys. Space Sci. 333 449
[57]Fernando S and Correa J 2012 Phys. Rev. D 86 064039
[58]Flachi A and Lemos J P S 2013 Phys. Rev. D 87 024034
[59]Li J, Ma H and Lin K 2013 Phys. Rev. D 88 064001
[60]Sebastian S and Kuriakose V C 2014 Mod. Phys. Lett. A 29 1450019
[61]Fernando S and Clark T 2014 Gen. Relativ. Gravit. 46 1834
[62]Li J, Lin K and Yang N 2015 Eur. Phys. J. C 75 131
[63]Toshmatov B et al 2015 Phys. Rev. D 91 083008
[64]Fernando S 2015 Int. J. Mod. Phys. D 24 1550104
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 010401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 010401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 010401
[4] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 010401
[5] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 010401
[6] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 010401
[7] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 010401
[8] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 010401
[9] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 010401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 010401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 010401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 010401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 010401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 010401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 010401
Viewed
Full text


Abstract