Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 010302    DOI: 10.1088/0256-307X/35/1/010302
GENERAL |
Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique
Jie Zhou1, Hong-Yi Su1, Fu-Lin Zhang2, Hong-Biao Zhang3, Jing-Ling Chen1**
1Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071
2Physics Department, School of Science, Tianjin University, Tianjin 300072
3Institute of Theoretical Physics, Northeast Normal University, Changchun 130024
Cite this article:   
Jie Zhou, Hong-Yi Su, Fu-Lin Zhang et al  2018 Chin. Phys. Lett. 35 010302
Download: PDF(328KB)   PDF(mobile)(328KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Jaynes–Cummings model is solved with the raising and lowering (shift) operators using the matrix-diagonalizing technique. Bell nonlocality is also found to be present ubiquitously in the excitation states of the model.
Received: 27 October 2017      Published: 17 December 2017
PACS:  03.65.Fd (Algebraic methods)  
  02.30.Ik (Integrable systems)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Supported by the National Natural Science Foundations of China under Grant Nos 11475089, 11675119 and 11575125.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/010302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/010302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Zhou
Hong-Yi Su
Fu-Lin Zhang
Hong-Biao Zhang
Jing-Ling Chen
[1]De Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford: Clarendon)
[2]Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
Mielnik B 1984 J. Math. Phys. 25 3387
Stahlhofen A and Bleuler K 1989 Nuovo Cimento B 104 447
Hoppe J 1992 Lectures on Integrable Systems (Berlin: Springer Verlag)
Díaz J I, Negro J, Neito L M and Rosas-Ortiz O 1999 J. Phys. A 32 8447
[3]Ge M L, Kwek L C, Liu Y, Oh C H and Wang X B 2000 Phys. Rev. A 62 052110
[4]Delbecq C and Quesne C 1993 J. Phys. A 26 L127
[5]Chen J L, Liu Y and Ge M L 1998 J. Phys. A 31 6473
[6]Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[7]Vedral V 2006 Modern Foundations of Quantum Optics (London: Imperial College Press)
[8]Irish E K 2007 Phys. Rev. Lett. 99 173601
[9]Braak D 2011 Phys. Rev. Lett. 107 100401
[10]Hu M G and Chen J L 2007 Int. J. Theor. Phys. 46 2119
[11]Chen J L, Zhang H B, Wang X H, Jing H and Zhao X G 2000 Int. J. Theor. Phys. 39 2043
[12]Quesne C 1999 J. Phys. A 32 6705
[13]Wang X H and Liu Y B 2009 Int. J. Theor. Phys. 48 2748
[14]Wang X H and Liu Y B 2010 Chin. Phys. Lett. 27 020301
[15]Chen Z B, Pan J W, Hou G and Zhang Y D 2002 Phys. Rev. Lett. 88 040406
[16]Bell J S 1964 Physics 1 195
[17]Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
Related articles from Frontiers Journals
[1] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 010302
[2] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 010302
[3] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 010302
[4] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 010302
[5] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 010302
[6] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 010302
[7] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 010302
[8] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 010302
[9] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 010302
[10] M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi. Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta[J]. Chin. Phys. Lett., 2012, 29(8): 010302
[11] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 010302
[12] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 010302
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010302
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 010302
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 010302
Viewed
Full text


Abstract