Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 010301    DOI: 10.1088/0256-307X/35/1/010301
GENERAL |
Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions
Wei Qi1**, Zi-Hao Li1, Zhao-Xin Liang2
1Department of Applied Physics, School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021
2Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
Wei Qi, Zi-Hao Li, Zhao-Xin Liang 2018 Chin. Phys. Lett. 35 010301
Download: PDF(740KB)   PDF(mobile)(738KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by the recent experiment [Nature 530 (2016) 194] in which a stable droplet in a dipolar quantum gas has been created by the interaction-induced instability, we focus on the modulation instability of an optically-trapped dipolar Bose–Einstein condensate with three-body interaction. Within the mean-field level, we analytically solve the discrete cubic-quintic Gross–Pitaevskii equation with dipole–dipole interaction loaded into a deep optical lattice and show how combined effects of the three-body interaction and dipole–dipole interaction on the condition of modulational instability. Our results show that the interplay of the three-body interaction and dipole–dipole interaction can dramatically change the modulation instability condition compared with the ordinary Gross–Pitaevskii equation. We believe that the predicted results in this work can be useful for the future possible experiment of loading a Bose–Einstein condensate of $^{164}$Dy atoms with strong magnetic dipole–dipole interaction into an optical lattice.
Received: 11 September 2017      Published: 17 December 2017
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11647017, and the Science Research Fund of Shaanxi University of Science and Technology under Grant No BJ16-03.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/010301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Qi
Zi-Hao Li
Zhao-Xin Liang
[1]Kaudau H et al 2016 Nature 530 194
[2]Bisset R N and Blakie P B 2015 Phys. Rev. A 92 061603(R)
[3]Xi K T and Saito H 2016 Phys. Rev. A 93 011604(R)
[4]Bisset R N et al 2016 Phys. Rev. A 94 033619
[5]Wächtler F et al 2016 Phys. Rev. A 94 043618
[6]Edler D et al 2017 Phys. Rev. Lett. 119 050403
[7]Blakie P B 2016 Phys. Rev. A 93 033644
[8]Adhikari S K 2017 Phys. Rev. A 95 023606
[9]Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417
[10]Bhat I A et al 2015 Phys. Rev. A 92 063606
[11]Nguyen J H V et al 2017 Science 356 422
[12]Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
[13]Wu B and Niu Q 2001 Phys. Rev. A 64 061603(R)
[14]Bai X D and Xue J K 2013 Phys. Rev. E 88 062916
[15]Zheng G P et al 2015 Commun. Theor. Phys. 63 565
[16]Rojas-Rojas S et al 2011 Phys. Rev. A 84 033621
[17]Chen H et al 2010 Int. J. Mod. Phys. B 24 5695
[18]Wu T T 1959 Phys. Rev. 115 1390
[19]Braaten E and Nieto A 1999 Eur. Phys. J. B 11 143
[20]Büchler H P et al 2007 Nat. Phys. 3 726
[21]Smerizi A et al 2002 Phys. Rev. Lett. 89 170402
[22]Inouye S et al 1998 Nature 392 151
[23]Anker T et al 2005 Phys. Rev. Lett. 94 020403
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 010301
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 010301
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 010301
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 010301
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 010301
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 010301
[10] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 010301
[11] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 010301
[12] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 010301
[13] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 010301
[14] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 010301
[15] YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui. Coherent Destruction of Tunneling of Dipolar Bosonic Gas[J]. Chin. Phys. Lett., 2014, 31(1): 010301
Viewed
Full text


Abstract