Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 010201    DOI: 10.1088/0256-307X/35/1/010201
GENERAL |
Dark Sharma–Tasso–Olver Equations and Their Recursion Operators
Yu Wang1, Biao Li1**, Hong-Li An2
1Department of Mathematics, and Ningbo Collaborative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere, Ningbo University, Ningbo 315211
2College of Sciences, Nanjing Agricultural University, Nanjing 210095
Cite this article:   
Yu Wang, Biao Li, Hong-Li An 2018 Chin. Phys. Lett. 35 010201
Download: PDF(340KB)   PDF(mobile)(339KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A complete scalar classification for dark Sharma–Tasso–Olver's (STO's) equations is derived by requiring the existence of higher order differential polynomial symmetries. There are some free parameters for every class of dark STO systems, thus some special equations including symmetry equation and dual symmetry equation are obtained by selecting a free parameter. Furthermore, the recursion operators of STO equation and dark STO systems are constructed by a direct assumption method.
Received: 16 October 2017      Published: 17 December 2017
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775121, 11775116 and 11435005, the Ningbo Natural Science Foundation of China under Grant No 2015A610159, and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/010201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Wang
Biao Li
Hong-Li An
[1]Kupershmidt B A 2001 J. Nonlinear Math. Phys. 8 363
[2]Qiao Z J 2001 Rev. Math. Phys. 13 545
[3]Magri F 1978 J. Math. Phys. 19 1156
[4]Xiong N, Lou S Y, Li B and Chen Y 2017 Commun. Theor. Phys. 68 13
[5]Liu X J, Liu R L and Zeng Y B 2008 Phys. Lett. A 372 3819
[6]Liu Q P, Hu X B and Zhang M X 2005 Nonlinearity 18 1597
[7]Olver P J 1977 J. Math. Phys. 18 1212
[8]Gudkov V V 1997 J. Math. Phys. 38 4794
[9]Wang S, Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 21 231
[10]Hon Y C and Fan E 2005 Chaos Solitons Fractals 24 1087
[11]Inan I E K D 2007 Physica A 381 104
[12]Huang W L and Cai J L 2011 Chin. Phys. Lett. 28 110203
[13]Yao B W and Lou S Y 2012 Chin. Ann. Math. Ser. B 33 271
[14]Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[15]Hu X Z and Chen Y 2015 Chin. Phys. B 24 090203
[16]Yao R X and Lou S Y 2008 Chin. Phys. Lett. 25 1927
[17]Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[18]Ren B, Yang J R, Zeng B Q and Liu P 2015 Chin. Phys. B 24 010202
[19]Li Y Q, Chen J Q, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
[20]Fordy A P and Gibbons J 1980 J. Math. Phys. 21 2508
[21]Fokas A S and Anderson R L 1982 J. Math. Phys. 23 1066
[22]Fokas A S 1987 Stud. Appl. Math. 77 253
[23]Santini P M and Fokas A S 1988 Commun. Math. Phys. 115 375
[24]Fokas A S and Santini P M 1988 Commun. Math. Phys. 116 449
[25]Qiao Z J 2006 J. Math. Phys. 47 112701
[26]Qiao Z J 2007 J. Math. Phys. 48 082701
[27]Qiao Z J 2003 Commun. Math. Phys. 239 309
[28]Cao C W 1989 Sci. Chin. A 7 701
[29]Cao C W 1989 Chin. Sci. Bull. 34 1331
[30]Symes W 1979 J. Math. Phys. 20 721
[31]Adler M 1978 Invent. Math. 50 219
[32]Fu W and Zhang D J 2013 Chin. Phys. Lett. 30 080201
[33]Cai L Q, Wang L F, Wu K and Yang J 2013 Chin. Phys. Lett. 30 020306
[34]Gurses M, Karasu A and Sokolov V V 1999 J. Math. Phys. 40 6473
[35]Fokas A S and Fuchssteiner B 1981 Nonlinear Anal.: Theory Methods Appl. 5 423
[36]Fuchssteiner B 1979 Nonlinear Anal.: Theory Methods Appl. 3 849
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 010201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 010201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 010201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 010201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 010201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 010201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 010201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 010201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 010201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 010201
Viewed
Full text


Abstract