Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097302    DOI: 10.1088/0256-307X/34/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor
Xiang-Mi Zhan1, Quan Wang1, Kun Wang1, Wei Li1, Hong-Ling Xiao1,2,3, Chun Feng1,3, Li-Juan Jiang1,3, Cui-Mei Wang1,2,3, Xiao-Liang Wang1,2,3**, Zhan-Guo Wang1,3
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049
3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083
Cite this article:   
Xiang-Mi Zhan, Quan Wang, Kun Wang et al  2017 Chin. Phys. Lett. 34 097302
Download: PDF(648KB)   PDF(mobile)(642KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously all over the globe. Fast electrical and highly sensitive detection of the CEA with AlGaN/GaN high electron mobility transistor is demonstrated experimentally. To achieve a low detection limit, the Au-gated sensing area of the sensor is functionalized with a CEA aptamer instead of the corresponding antibody. The proposed aptasensor has successfully detected different concentrations (ranging from 50 picogram/milliliter (pg/ml) to 50 nanogram/milliliter (ng/ml)) of CEA and achieved a detection limit as low as 50 pg/ml at $V_{\rm ds}=0.5$ V. The drain-source current shows a clear increase of 11.5 $\mu$A under this bias.
Received: 17 April 2017      Published: 15 August 2017
PACS:  73.61.Ey (III-V semiconductors)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Science Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/097302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/097302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Mi Zhan
Quan Wang
Kun Wang
Wei Li
Hong-Ling Xiao
Chun Feng
Li-Juan Jiang
Cui-Mei Wang
Xiao-Liang Wang
Zhan-Guo Wang
[1]Cancer Health Topic of WHO [Online] http://www.who.int /cancer/en/index.html
[2]Koepke J A 1992 Cancer 69 1578
[3]Sturgeon C M, Duffy M J, Hofmann B R, Lamerz R, Fritsche H A, Gaarenstroom K, Bonfrer J, Ecke T H, Grossman H B, Hayes P, Hoffmann R T, Lerner S P, Löhe F, Louhimo J, Sawczuk I, Taketa K and Diamandis E P 2010 Clin. Chem. 56 e1
[4]Thomas P, Gangopadhyay A, Jr G S, Andrews C, Nakazato H, Oikawa S and Jessup J M 1995 Cancer Lett. 92 59
[5]Gangopadhyay A, Lazure D A and Thomas P 1997 Cancer Lett. 118 1
[6]Qin H F, Qu L L, Liu H, Wang S S and Gao H J 2013 Asian Pac. J. Cancer Prev. 14 4205
[7]Ulrich H, Martin s A H B and Pesquero J B 2004 J. Cytom. Part. A 59A 220
[8]O'Sullivan C K 2002 Anal. Bioanal. Chem. 372 44
[9]Song S P, Wang L H, Li J, Zhao J L and Fan C H 2008 TrAC Trends Anal. Chem. 27 108
[10]Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[11]Cao Y, Zimmermann T, Xing H L and Jena D 2010 Appl. Phys. Lett. 96 042102
[12]Tan X, Lü Y J, Gu G D, Wang L, Dun S B, Song X B, Guo H Y, Yin J Y, Cai S J and Feng Z H 2015 J. Semicond. 36 074008
[13]Song X B, Lv Y J, Gu G D, Wang Y G, Tan X, Zhou X Y, Dun S B, Xu P, Yin J Y, Wei B H, Feng Z H and Cai S J 2016 J. Semicond. 37 044007
[14]Stutzmann M, G Steinhoff G, Eickhoff M, Ambacher O, Nebel C E, Schalwig J, Neuberger R and Muller G 2002 Diamond Relat. Mater. 11 886
[15]Steinhoff G, Purrucker O, Tanaka M, Stutzmann M and Eickhoff M 2003 Adv. Funct. Mater. 13 841
[16]Kang B S, Wang H T, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 112106
[17]Chen K H, Kang B S, Wang H T, Lele T P, Ren F, Wang Y L, Chang C Y, Pearton S J, Dennis D M, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2008 Appl. Phys. Lett. 92 192103
[18]Wang Y L, Chu B H, Chen K H, Chang C Y, Lele T P, Tseng Y, Pearton S J, Ramage J, Hooten D, Dabiran A, Chow P P and Ren F 2008 Appl. Phys. Lett. 93 262101
[19]Li J D, Cheng J J, Miao B, Wei X W, Xie J, Zhang J C, Zhang Z Q and Wu D M 2014 J. Micromech. Microeng. 24 075023
[20]Li J D, Cheng J J, Miao B, Wei X W, Zhang Z Q, Li H W and Wu D M 2014 Acta Phys. Sin. 63 070204 (in Chinese)
[21]Cui L, Yin H B, Jiang L J, Wang Q, Feng C, Xiao H L, Wang C M, Gong J M, Zhang B, Li B Q, Wang X L and Wang Z G 2015 J. Semicond. 36 103002
[22]Gong J M, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L and Wang Z G 2016 Chin. Phys. Lett. 33 117303
[23]Zhou Z M, Feng Z, Zhou J, Fang B Y, Ma Z Y, Liu B, Zhao Y D and Hu X B 2015 Sens. Actuators B 210 158
[24]Liu Z G, Wang Y X, Guo Y J and Dong C 2016 Electroanalysis 28 1023
[25]Cheng J J, Li J D, Miao B, Wang J N, Wu Z Y, Wu D M and Pei R J 2014 Appl. Phys. Lett. 105 083121
[26]Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L and Wang Z G 2017 Chin. Phys. Lett. 34 047301
[27]Schwarz S U, Linkohr S, Lorenz P, Krischok S, Nakamura T, Cimalla V, Nebel C E and Ambacher O 2011 Phys. Status Solidi A 208 1626
[28]Ding K, Wang C Y, Zhang B T, Zhang Y, Guan M, Cui L J, Zhang Y W, Zeng Y P, Lin Z and Huang F 2014 IEEE Electron Device Lett. 35 333
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 097302
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 097302
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 097302
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 097302
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 097302
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 097302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 097302
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 097302
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 097302
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 097302
[11] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 097302
[12] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 097302
[13] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 097302
[14] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 097302
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 097302
Viewed
Full text


Abstract