FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter |
Qing-Chao Huang1,2, Qi Wang1,2, Cheng-Wu Yang1,2, Wei Chen1**, Jian-Guo Liu1,2, Ning-Hua Zhu1 |
1Laboratory of Solid State Optoelectronic information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Qing-Chao Huang, Qi Wang, Cheng-Wu Yang et al 2017 Chin. Phys. Lett. 34 084204 |
|
|
Abstract A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8 GHz, and the single sideband phase noise of the fundamental signal is lower than $-$100 dBc/Hz at an offset of 10 kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10 GHz is 2.39$\times$10$^{-9}$.
|
|
Received: 26 April 2017
Published: 22 July 2017
|
|
PACS: |
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
42.30.Lr
|
(Modulation and optical transfer functions)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.25.Ja
|
(Polarization)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61675196, the National Basic Research Program of China under Grant No 2014CB340102, the National High-Tech Research and Development Program of China under Grant No 2015AA016903, and the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002. |
|
|
[1] | Yao X S and Maleki L 1996 J. Opt. Soc. Am. B 13 1725 | [2] | Yao X S and Maleki L 1996 Opt. Lett. 21 483 | [3] | Zou W W et al 2016 Sci. Rep. 6 19786 | [4] | Zhu Y et al 2014 Appl. Opt. 53 5084 | [5] | Wang W T et al 2015 IEEE Photon. Technol. Lett. 27 522 | [6] | Yu H C et al 2014 Photon. Res. 2 B1 | [7] | Shin M and Kumar P 2007 Microwave Symp. IEEE/MTT-S Int. (Hawaii: Honolulu) 44 63 | [8] | Ji Y et al 2013 Chin. Opt. Lett. 11 050602 | [9] | Huo L et al 2005 Chin. Opt. Lett. 3 140 | [10] | Yu Y et al 2013 Chin. Opt. Lett. 11 120601 | [11] | Pan S L and Yao J P 2010 Opt. Lett. 35 1911 | [12] | Tang Z Z et al 2012 IEEE Photon. Technol. Lett. 24 1487 | [13] | Yang B et al 2013 IEEE Photon. Technol. Lett. 25 921 | [14] | Xie X F et al 2013 Opt. Lett. 38 655 | [15] | Zhang T T et al 2015 IEEE Photon. Technol. Lett. 27 1313 | [16] | Sakamoto T, Kawanishi T, Izutsu M et al 2005 Conf. Lasers Electro-Opt. Opt. Soc. Am. (Maryland: Baltimore) p 877 | [17] | Pan S L and Yao J P 2009 IEEE Photon. Technol. Lett. 21 929 | [18] | Li W, Liu J G and Zhu N H 2015 IEEE Photon. Technol. Lett. 27 1461 | [19] | Wang L X, Zhu N H, Li W and Liu J G 2011 IEEE Photon. Technol. Lett. 23 1688 | [20] | Zheng J Y, Sun W H, Wang W T, Tong Y W, Wang W Y, Wang X, Yuan H Q, Liu J G and Zhu N H 2015 IEEE Photon. Technol. Lett. 27 1864 | [21] | Yang B, Jin X F, Zou S H, Tangdiongga E, Koonen T, Chi H, Zheng S L and Zhang X M 2012 IEEE Microwave Photon. (MWP) Int. Topical Meeting. (Netherland: Noordwijk) p 55 | [22] | Qiao Y F, Pan M, Zheng S L, Chi H, Jin X F and Zhang X M 2013 J. Opt. 15 035406 | [23] | Xu W, Jin T and Chi H 2013 Opt. Express 21 32516 | [24] | Liu W L, Wang M G and Yao J P 2013 J. Lightwave Technol. 31 1636 | [25] | Xu X Y, Dai J, Dai Y T, Yin F F, Zhou Y, Li J Q, Yin J, Wang Q Y and Xu K 2015 Opt. Lett. 40 5858 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|