Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084204    DOI: 10.1088/0256-307X/34/8/084204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter
Qing-Chao Huang1,2, Qi Wang1,2, Cheng-Wu Yang1,2, Wei Chen1**, Jian-Guo Liu1,2, Ning-Hua Zhu1
1Laboratory of Solid State Optoelectronic information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Qing-Chao Huang, Qi Wang, Cheng-Wu Yang et al  2017 Chin. Phys. Lett. 34 084204
Download: PDF(622KB)   PDF(mobile)(615KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8 GHz, and the single sideband phase noise of the fundamental signal is lower than $-$100 dBc/Hz at an offset of 10 kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10 GHz is 2.39$\times$10$^{-9}$.
Received: 26 April 2017      Published: 22 July 2017
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.25.Ja (Polarization)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61675196, the National Basic Research Program of China under Grant No 2014CB340102, the National High-Tech Research and Development Program of China under Grant No 2015AA016903, and the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084204       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/084204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing-Chao Huang
Qi Wang
Cheng-Wu Yang
Wei Chen
Jian-Guo Liu
Ning-Hua Zhu
[1]Yao X S and Maleki L 1996 J. Opt. Soc. Am. B 13 1725
[2]Yao X S and Maleki L 1996 Opt. Lett. 21 483
[3]Zou W W et al 2016 Sci. Rep. 6 19786
[4]Zhu Y et al 2014 Appl. Opt. 53 5084
[5]Wang W T et al 2015 IEEE Photon. Technol. Lett. 27 522
[6]Yu H C et al 2014 Photon. Res. 2 B1
[7]Shin M and Kumar P 2007 Microwave Symp. IEEE/MTT-S Int. (Hawaii: Honolulu) 44 63
[8]Ji Y et al 2013 Chin. Opt. Lett. 11 050602
[9]Huo L et al 2005 Chin. Opt. Lett. 3 140
[10]Yu Y et al 2013 Chin. Opt. Lett. 11 120601
[11]Pan S L and Yao J P 2010 Opt. Lett. 35 1911
[12]Tang Z Z et al 2012 IEEE Photon. Technol. Lett. 24 1487
[13]Yang B et al 2013 IEEE Photon. Technol. Lett. 25 921
[14]Xie X F et al 2013 Opt. Lett. 38 655
[15]Zhang T T et al 2015 IEEE Photon. Technol. Lett. 27 1313
[16]Sakamoto T, Kawanishi T, Izutsu M et al 2005 Conf. Lasers Electro-Opt. Opt. Soc. Am. (Maryland: Baltimore) p 877
[17]Pan S L and Yao J P 2009 IEEE Photon. Technol. Lett. 21 929
[18]Li W, Liu J G and Zhu N H 2015 IEEE Photon. Technol. Lett. 27 1461
[19]Wang L X, Zhu N H, Li W and Liu J G 2011 IEEE Photon. Technol. Lett. 23 1688
[20]Zheng J Y, Sun W H, Wang W T, Tong Y W, Wang W Y, Wang X, Yuan H Q, Liu J G and Zhu N H 2015 IEEE Photon. Technol. Lett. 27 1864
[21]Yang B, Jin X F, Zou S H, Tangdiongga E, Koonen T, Chi H, Zheng S L and Zhang X M 2012 IEEE Microwave Photon. (MWP) Int. Topical Meeting. (Netherland: Noordwijk) p 55
[22]Qiao Y F, Pan M, Zheng S L, Chi H, Jin X F and Zhang X M 2013 J. Opt. 15 035406
[23]Xu W, Jin T and Chi H 2013 Opt. Express 21 32516
[24]Liu W L, Wang M G and Yao J P 2013 J. Lightwave Technol. 31 1636
[25]Xu X Y, Dai J, Dai Y T, Yin F F, Zhou Y, Li J Q, Yin J, Wang Q Y and Xu K 2015 Opt. Lett. 40 5858
Related articles from Frontiers Journals
[1] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 084204
[2] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 084204
[3] En-Ming Xu, Zu-Xing Zhang, Pei-Li Li. Tunable Single-Passband Microwave Photonic Filter Based on Sagnac Loop and Fabry–Perot Laser Diode[J]. Chin. Phys. Lett., 2017, 34(1): 084204
[4] WANG Hui-Tao, ZHOU Dai-Bing, ZHANG Rui-Kang, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, WANG Wei, JI Chen. Optimization of 1.3-μm InGaAsP/InP Electro-Absorption Modulator[J]. Chin. Phys. Lett., 2015, 32(08): 084204
[5] ZHOU Dai-Bing, WANG Hui-Tao, ZHANG Rui-Kang, WANG Bao-Jun, BIAN Jing, AN Xin, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, JI Chen, WANG Wei. Fabrication of 32 Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology[J]. Chin. Phys. Lett., 2015, 32(5): 084204
[6] LI Zhen-Hua, ZHANG Mei-Na, LI Xing, LIU Chun-Xiang, CHENG Chuan-Fu. Topological Charge Conversion with Spiral-Slit Screens[J]. Chin. Phys. Lett., 2013, 30(10): 084204
[7] YANG Xiao-Hong, LIU Shao-Qing, NI Hai-Qiao, LI Mi-Feng, LI Liang, HAN Qin, NIU Zhi-Chuan. High Quality Pseudomorphic In0.24 GaAs/GaAs Multi-Quantum-Well and Large-Area Transmission Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2013, 30(4): 084204
[8] WANG Yong-Zhi, OUYANG Xiao-Ping, MA Jin-Gui, YUAN Peng, XU Guang, QIAN Lie-Jia. First Application of Single-Shot Cross-Correlator for Characterizing Nd:glass Petawatt Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 084204
[9] JIN Hai-Qin, LIANG Jian-Chu, CAI Ze-Bin, LIU Fei, YI Lin. Three-Dimensional Hermite–Bessel–Gaussian Soliton Clusters in Strongly Nonlocal Media[J]. Chin. Phys. Lett., 2012, 29(12): 084204
[10] QIU Chen, HU Ting, WANG Wan-Jun, YU Ping, JIANG Xiao-Qing, YANG Jian-Yi. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection[J]. Chin. Phys. Lett., 2012, 29(9): 084204
[11] ZHANG Shang-Jian, ZHANG Xiao-Xia, and LIU Yong. Swept Frequency Measurement of Electrooptic Phase Modulators Using Dispersive Fibers[J]. Chin. Phys. Lett., 2012, 29(8): 084204
[12] LI Ya-Ming, HU Wei-Xuan, CHENG Bu-Wen, LIU Zhi, WANG Qi-Ming. Remarkable Franz-Keldysh Effect in Ge-on-Si p-i-n Diodes[J]. Chin. Phys. Lett., 2012, 29(3): 084204
[13] SHAO Yong-Bo**, ZHAO Ling-Juan, YU Hong-Yan, QIU Ji-Fang, QIU Ying-Ping, PAN Jiao-Qing, WANG Bao-Jun, ZHU Hong-Liang, WANG Wei . An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth[J]. Chin. Phys. Lett., 2011, 28(11): 084204
[14] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 084204
[15] ZHU Jia-Hu, HUANG Xu-Guang**, TAO Jin, XIE Jin-Ling . A Full-Duplex Radio-over-Fiber System Based on Frequency Twelvefold[J]. Chin. Phys. Lett., 2011, 28(2): 084204
Viewed
Full text


Abstract