Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080302    DOI: 10.1088/0256-307X/34/8/080302
GENERAL |
Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution
Ying-Ying Zhang1,2, Wan-Su Bao1,2**, Hong-Wei Li1,2, Chun Zhou1,2, Yang Wang1,2, Mu-Sheng Jiang1,2
1Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li et al  2017 Chin. Phys. Lett. 34 080302
Download: PDF(534KB)   PDF(mobile)(531KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.
Received: 31 March 2017      Published: 22 July 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying-Ying Zhang
Wan-Su Bao
Hong-Wei Li
Chun Zhou
Yang Wang
Mu-Sheng Jiang
[1]Bennett C H and Brassard G 1984 Int. Conf. Comput. Syst. Signal Process (Banglore, India) (New York: IEEE) p 175
[2]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3]Lo H K and Chau H F 1999 Science 283 2050
[4]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5]Mayers D 2001 J. ACM 48 351
[6]Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[7]Guan J Y, Cao Z, Liu Y, Shen-Tu G L, Pelc J S, Fejer M M, Peng C Z, Ma X, Zhang Q and Pan J W 2015 Phys. Rev. Lett. 114 180502
[8]Li Y H, Cao Y, Dai H, Lin J, Zhang Z, Chen W, Xu Y, Guan J Y, Liao S K, Yin J, Zhang Q, Ma X, Peng C Z and Pan J W 2016 Phys. Rev. A 93 030302
[9]Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
[10]Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[11]Zhang Z, Yuan X, Cao Z and Ma X F 2015 arXiv:1505.02481v1
[12]Mizutani A, Imoto N and Tamaki K 2015 Phys. Rev. A 92 060303
[13]Yin H L, Fu Y, Mao Y and Chen Z B 2016 Phys. Rev. A 93 022330
[14]Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2016 Opt. Express 24 20763
[15]Liu B, Gao F, Huang W and Wen Q Y 2015 Sci. Chin. Phys. Mech. Astron. 58 100301
[16]Sun S H, Gao M, Jiang M S, Li C Y and Liang L M 2012 Phys. Rev. A 85 032304
[17]Tang Y L, Yin H L, Ma X, Fung C H F, Liu Y, Yong H L, Chen T Y, Peng C Z, Chen Z B and Pan J W 2013 Phys. Rev. A 88 022308
[18]Sun S H, Jiang M S, Ma X C, Li C Y and Liang L M 2015 Sci. Rep. 4 04759
[19]Xu F, Qi B, Ma X, Xu H, Zheng H and Lo H K 2012 Opt. Express 20 12366
[20]Cao Z, Zhang Z, Lo H K and Ma X F 2015 New J. Phys. 17 053014
[21]Glauber R J 1963 Phys. Rev. A 131 2766
[22]Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[23]Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[24]Gobby C, Yuan Z L and Shield A J 2004 Appl. Phys. Lett. 84 3762
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 080302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 080302
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 080302
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080302
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 080302
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 080302
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 080302
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 080302
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 080302
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 080302
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 080302
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 080302
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 080302
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 080302
Viewed
Full text


Abstract