Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080301    DOI: 10.1088/0256-307X/34/8/080301
GENERAL |
Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing
Rui-Ke Chen1,2, Wan-Su Bao1,2**, Hai-Ze Bao1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2, Hong-Wei Li1,2
1Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao et al  2017 Chin. Phys. Lett. 34 080301
Download: PDF(558KB)   PDF(mobile)(552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol suggests an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same. In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of $10^{11}$, it can achieve nonzero secret key rate over 43.6 km.
Received: 22 March 2017      Published: 22 July 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui-Ke Chen
Wan-Su Bao
Hai-Ze Bao
Chun Zhou
Mu-Sheng Jiang
Hong-Wei Li
[1]Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. p 175
[2]Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[3]Huang D, Fang J, Wang C, Huang P and Zeng G H 2013 Chin. Phys. Lett. 30 114209
[4]Fang J, Huang P and Zeng G H 2014 Phys. Rev. A 89 022315
[5]Wang S, Yin Z Q, Chen W et al 2015 Nat. Photon. 9 832
[6]Lo H K and Chau H F 1999 Science 283 2050
[7]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[8]Lydersen L et al 2010 Nat. Photon. 4 686
[9]Li H W et al 2011 Phys. Rev. A 84 062308
[10]Ma H X et al 2016 Chin. Phys. B 25 080309
[11]Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[12]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[13]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[14]Wang X B 2005 Phys. Rev. Lett. 94 230503
[15]Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[16]Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[17]Xu F, Curty M, Qi B and Lo H K 2013 New J. Phys. 15 113007
[18]Yin Z Q et al 2013 Phys. Rev. A 88 062322
[19]Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 3732
[20]Xu F, Xu H and Lo H K 2014 Phys. Rev. A 89 052333
[21]Zhou C, Bao W S, Zhang H L, Li H W, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
[22]Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
[23]Zhou Y H, Yu Z W and Wang X B 2016 Phys. Rev. A 93 042324
[24]Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[25]Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J et al 2013 Phys. Rev. Lett. 111 130502
[26]Tang Z, Liao Z, Xu F, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
[27]Tang Y L, Yin H L et al 2014 Phys. Rev. Lett. 113 190501
[28]Valivarthi R et al 2015 J. Mod. Opt. 62 1141
[29]Pirandola S et al 2015 Nat. Photon. 9 397
[30]Wang C et al 2015 Phys. Rev. Lett. 115 160502
[31]Comandar L et al 2016 Nat. Photon. 10 312
[32]Tang Y L et al 2016 Phys. Rev. X 6 011024
[33]Yin H L, Chen T Y, Yu Z W et al 2016 Phys. Rev. Lett. 117 190501
[34]Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[35]Chen R K, Bao W S, Wang Y, Bao H Z, Zhou C and Li H W 2016 Opt. Express 24 6594
[36]Zhu C, Xu F and Pei C 2015 Sci. Rep. 5 17449
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 080301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 080301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 080301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 080301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 080301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 080301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 080301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 080301
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 080301
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 080301
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 080301
Viewed
Full text


Abstract