Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080201    DOI: 10.1088/0256-307X/34/8/080201
GENERAL |
Validation of the Ability of Full Configuration Interaction Quantum Monte Carlo for Studying the 2D Hubbard Model
Su-Jun Yun1,3**, Tie-Kuang Dong2, Shi-Ning Zhu3
1School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171
2Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008
3School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Su-Jun Yun, Tie-Kuang Dong, Shi-Ning Zhu 2017 Chin. Phys. Lett. 34 080201
Download: PDF(567KB)   PDF(mobile)(561KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a $4\times4$ square lattice system with various interaction strengths are calculated. It is found that the calculated results are in good agreement with those obtained by exact diagonalization (i.e., the exact values for a given basis set) when the population of psi particles (psips) is higher than the critical population required to correctly sample the ground state wave function. In addition, the variations of the average computational time per 20 Monte Carlo cycles with the coupling strength and the number of processors are also analyzed. The calculated results show that the computational efficiency of an FCIQMC calculation is mainly affected by the total population of psips and the communication between processors. These results can provide useful references for understanding the FCIQMC algorithm, studying the ground state properties of the 2D Hubbard model for the larger system size by the FCIQMC method and using a computational budget as effectively as possible.
Received: 17 February 2017      Published: 22 July 2017
PACS:  02.70.Ss (Quantum Monte Carlo methods)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province under Grant No 16KJB140008, the National Natural Science Foundation of China under Grant Nos 11447204 and 11647164, the Natural Science Foundation of Jiangsu Province under Grant No BK20151079, and the Scientific Research Foundation of Nanjing Xiaozhuang University under Grant No 2015NXY34.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Su-Jun Yun
Tie-Kuang Dong
Shi-Ning Zhu
[1]Schwarz L R, Booth G H and Alavi A 2015 Phys. Rev. B 91 045139
[2]LeBlanc J P F, Antipov A E, Becca F et al 2015 Phys. Rev. X 5 041041
Huang Y, Chen K, Deng Y J, Prokofev N and Svistunov B 2016 Phys. Rev. Lett. 116 177203
[3]Ma F J, Purwanto W, Zhang S W et al 2015 Phys. Rev. Lett. 114 226401
Qin M P, Shi H and Zhang S W 2016 Phys. Rev. B 94 085103
[4]Liang S D, Wang Q H and Wang Z D 1997 Z. Phys. B: Condens. Matter 102 277
Liang S D, Wang Q H and Wang Z D 1997 Z. Phys. B: Condens. Matter 104 27
[5]Wang Y L, Huang L, Du L and Dai X 2016 Chin. Phys. B 25 037103
Huang L, Wang Y L, Meng Z Y, Du L, Werner P and Dai X 2015 Comput. Phys. Commun. 195 140
[6]Foulkes W M C, Mitas L, Needs R J and Rajagopal G 2001 Rev. Mod. Phys. 73 1
[7]Anderson J B 1975 J. Chem. Phys. 63 1499
Anderson J B 1976 J. Chem. Phys. 65 4121
Anderson J B 1979 Int. J. Quantum Chem. 15 109
[8]Zhang S W and Krakauer H 2003 Phys. Rev. Lett. 90 136401
[9]Booth G H, Thom A J W and Alavi A 2009 J. Chem. Phys. 131 054106
[10]Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[11]Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[12]Spencer J S, Blunt N S and Foulkes W M C 2012 J. Chem. Phys. 136 054110
[13]Fano G and Ortolani F 1990 Phys. Rev. B 42 6877
[14]Vigor W A, Spencer J S, Bearpark M J and Thom A J W 2016 J. Chem. Phys. 144 094110
[15]Cleland D, Booth G H and Alavi A 2010 J. Chem. Phys. 132 041103
[16]Petruzielo F R, Holmes A A, Changlani H J, Nightingale M P and Foulkes W M C 2012 Phys. Rev. Lett. 109 230201
Blunt N S, Smart S D, Kersten J A F, Spencer J S, Booth G H and Alavi A 2015 J. Chem. Phys. 142 184107
Related articles from Frontiers Journals
[1] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 080201
[2] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 080201
[3] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 080201
[4] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 080201
Viewed
Full text


Abstract