CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Boundary Hamiltonian Theory for Gapped Topological Orders |
Yuting Hu1, Yidun Wan1,2, Yong-Shi Wu3,1,2,4** |
1Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
3State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433
4Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, 84112, USA
|
|
Cite this article: |
Yuting Hu, Yidun Wan, Yong-Shi Wu 2017 Chin. Phys. Lett. 34 077103 |
|
|
Abstract We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
|
|
Received: 25 May 2017
Published: 06 June 2017
|
|
PACS: |
71.10.-w
|
(Theories and models of many-electron systems)
|
|
05.30.Pr
|
(Fractional statistics systems)
|
|
71.10.Hf
|
(Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)
|
|
02.20.Uw
|
(Quantum groups)
|
|
|
|
|
[1] | Wen X G 1989 Phys. Rev. B 40 7387(R) | [2] | Wen X G 1991 Int. J. Mod. Phys. B 5 1641 | [3] | Dennis E, Kitaev A, Landahl A and Preskill J 2002 J. Math. Phys. 43 4452 | [4] | Kitaev A 2003 Ann. Phys. 303 2 | [5] | Freedman M, Kitaev A, Preskill J and Wang Z 2003 Bull. Amer. Math. Soc. 40 31 | [6] | Stern A and Halperin B 2006 Phys. Rev. Lett. 96 016802 | [7] | Nayak C, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 | [8] | Beigi S, Shor P and Whalen D 2011 Commun. Math. Phys. 306 663 | [9] | Cong I, Cheng M and Wang Z 2016 arXiv:1609.02037 | [10] | Cong I, Cheng M and Wang Z 2017 arXiv:1703.03564 | [11] | Levin M A and Wen X G 2005 Phys. Rev. B 71 045110 | [12] | Hu Y, Wan Y and Wu Y S 2013 Phys. Rev. B 87 125114 | [13] | Hu Y Stirling S and Wu Y S 2012 Phys. Rev. B 85 075107 | [14] | Wu Y S 2016 Mod. Phys. Lett. B 30 1630003 | [15] | Kitaev A and Kong L 2012 Commun. Math. Phys. 313 351 | [16] | Levin M 2013 Phys. Rev. X 3 021009 | [17] | Kong L 2014 Nucl. Phys. B 886 436 | [18] | Barkeshli M Jian C M and Qi X L 2013 Phys. Rev. B 88 241103 | [19] | Barkeshli M, Jian C M and Qi X L 2013 Phys. Rev. B 88 235103 | [20] | Wang J and Wen X G 2015 Phys. Rev. B 91 125124 | [21] | Hung L Y and Wan Y 2013 Phys. Rev. B 87 195103 | [22] | Iadecola T, Neupert T, Chamon C and Mudry C 2014 Phys. Rev. B 90 205115 | [23] | Barkeshli M, Oreg Y and Qi X-L 2014 arXiv:1401.3750 | [24] | Barkeshli M, Berg E and Kivelson S 2014 Science 346 722 | [25] | Hung L Y and Wan Y 2015 Phys. Rev. Lett. 114 076401 | [26] | Hung L Y and Wan Y 2015 J. High Energy Phys. 1507 120 | [27] | Lan T, Wang J C and Wen X G 2015 Phys. Rev. Lett. 114 076402 | [28] | Elitzur S, Moore G, Schwimmer A and Seiberg N 1989 Nucl. Phys. B 326 108 | [29] | Peng Y and Du J 2016 arXiv:1608.06963 | [30] | Lesanovsky I and Katsura H 2012 Phys. Rev. A 86 041601 | [31] | Li K, Wan Y, Huang L Y, Lan T, Long G, Lu D, Zeng B and Laflamme 2017 Phys. Rev. Lett. 118 080502 | [32] | Wang J, Wen X-G and Witten E 2017 arXiv:1705.06728 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|