CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE |
Xiao-Meng Zhao, Yang Zhang**, Li-Jie Cui, Min Guan, Bao-Qiang Wang, Zhan-Ping Zhu, Yi-Ping Zeng |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Xiao-Meng Zhao, Yang Zhang, Li-Jie Cui et al 2017 Chin. Phys. Lett. 34 076105 |
|
|
Abstract We report the growth of InSb layers directly on GaAs (001) substrates without any buffer layers by molecular beam epitaxy (MBE). Influences of growth temperature and V/III flux ratios on the crystal quality, the surface morphology and the electrical properties of InSb thin films are investigated. The InSb samples with room-temperature mobility of 44600 cm$^{2}$/Vs are grown under optimized growth conditions. The effect of defects in InSb epitaxial on the electrical properties is researched, and we infer that the formation of In vacancy (V$_{\rm In})$ and Sb anti-site (Sb$_{\rm In})$ defects is the main reason for concentrations changing with growth temperature and Sb$_{2}$/In flux ratios. The mobility of the InSb sample as a function of temperature ranging from 90 K to 360 K is demonstrated and the dislocation scattering mechanism and phonon scattering mechanism are discussed.
|
|
Received: 12 January 2017
Published: 23 June 2017
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
|
Fund: Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2015094, the National Natural Science Foundation of China under Grant Nos 61204012, 61274049 and 61376058, the Beijing Natural Science Foundation under Grant Nos 4142053 and 4132070, and the Beijing Nova Program under Grant Nos 2010B056 and xxhz201503. |
|
|
[1] | Camargo E G, Ueno K and Morishita T 2007 IEEE Sens. J. 7 1335 | [2] | Qadri S B and Dinan J H 1985 Appl. Phys. Lett. 47 1066 | [3] | Zhang Y W, Zhang Y and Guan M 2014 Appl. Surf. Sci. 313 479 | [4] | Zhang Y W, Zhang Y and Guan M 2013 J. Appl. Phys. 114 153707 | [5] | Zhang Y W, Zhang Y and Guan M 2014 Phys. Status Solidi B 251 2287 | [6] | Zhao X M, Zhang Y et al 2017 J. Cryst. Growth 470 1 | [7] | Sato J, Nagai Y and Hara S 2012 Int. Conf. Indium Phosphide & Relat. Mater. (Santa Barbara 27–30 August 2012) p 237 | [8] | Cao X, Zhao D and Zhang Y 1988 Chin. Phys. Lett. 5 189 | [9] | Kasap M, Acar S and Oezcelik S 2005 Chin. Phys. Lett. 22 1218 | [10] | Kazakova O, Panchal V and Gallop J 2010 J. Appl. Phys. 107 09E708 | [11] | Peter J A and Lee C W 2012 Chin. Phys. Lett. 29 117201 | [12] | Biefeld R and Phillips J 2000 J. Cryst. Growth 209 567 | [13] | Debnath M, Zhang T and Roberts C 2004 J. Cryst. Growth 267 17 | [14] | Guo J, Sun W G, Peng Z Y, Zhou Z Q, Xu Y Q and Niu Z C 2009 Chin. Phys. Lett. 26 047802 | [15] | Yoshikawa A, Moriyasu Y and Kuze N 2015 J. Cryst. Growth 414 110 | [16] | Li Z, Liu G and Li M 2008 Jpn. J. Appl. Phys. 47 8730 | [17] | Weng X, Rudawski N G, Wang P T and Goldman R S 2005 J. Appl. Phys. 97 043713 | [18] | Chyi J, Kalem S and Kumar N S 1988 Appl. Phys. Lett. 53 1092 | [19] | Mahdi M and Sattar M 2012 20th Iranian Conf. Electr. Eng. (Tehran 15–17 May 2012) p 5 | [20] | Zhang T, Clowes S and Debnath M 2004 Appl. Phys. Lett. 84 4463 | [21] | Li Y B, Zhang Y and Zhang Y 2012 Appl. Surf. Sci. 258 6571 | [22] | Goryl G, Toton D, Tomaszewska N and Prauzner-Bechcicki J S 2010 Phys. Rev. B 82 165311 | [23] | Okamoto F and Ando K 1964 Jpn. J. Appl. Phys. 3 605 | [24] | Li Y B, Zhang Y and Zeng Y P 2010 J. Appl. Phys. 108 044504 | [25] | Atsushi O, Arata A, Takayuki A and Ichiro S 2001 J. Cryst. Growth 227 619 | [26] | Hurle D T J 2010 J. Appl. Phys. 107 121301 | [27] | Jin Y J, Zhang D H, Chen X Z and Tang X H 2011 J. Cryst. Growth 318 356 | [28] | Weng X, Goldman R S and Partin D L 2000 J. Appl. Phys. 88 6276 | [29] | Wu S D, Guo L W and Li Z H 2005 J. Cryst. Growth 277 21 | [30] | Zhang X, Statonbevan A E and Pashley D W 1990 J. Appl. Phys. 67 800 | [31] | Tran T L, Hatami F and Masselink W T 2008 J. Electron. Mater. 37 1799 | [32] | Soderstrom J R, Cumming M M, Yao J Y and Andersson T G 1992 Semicond. Sci. Technol. 7 337 | [33] | Pödör B 1966 Phys. Status Solidi B 16 167 | [34] | Dexter D L and Seitz F 1952 Phys. Rev. 86 964 | [35] | Ayers J E 1994 J. Cryst. Growth 135 71 | [36] | Zhang Y H, Chen P P and Lin T 2011 MBE Growth Electr. Properties InSb Film GaAs Substrate Seventh Int. Conf. Thin Film Phys. Appl. (Shanghai 24–27 September 2010) | [37] | Gao H C and Yin Z J 2015 Chin. Phys. Lett. 32 068102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|