Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 076102    DOI: 10.1088/0256-307X/34/7/076102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Anisotropic Migration of Defects under Strain Effect in BCC Iron
Ning Gao1**, Fei Gao2, Zhi-Guang Wang1
1Laboratory of Advanced Nuclear Material, Institute of Modern Physics, Lanzhou 730000
2Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Michigan 48109, USA
Cite this article:   
Ning Gao, Fei Gao, Zhi-Guang Wang 2017 Chin. Phys. Lett. 34 076102
Download: PDF(608KB)   PDF(mobile)(609KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The basic properties of defects (self-interstitial and vacancy) in BCC iron under uniaxial tensile strain are investigated with atomic simulation methods. The formation and migration energies of them show different dependences on the directions of uniaxial tensile strain in two different computation boxes. In box-1, the uniaxial tensile strain along the $\langle 100\rangle$ direction influences the formation and migration energies of the $\langle 110 \rangle$ dumbbell but slightly affects the migration energy of a single vacancy. In box-2, the uniaxial tensile strain along the $\langle 111\rangle$ direction influences the formation and migration energies of both vacancy and interstitials. Especially, a $\langle 110 \rangle$ dumbbell has a lower migration energy when its migration direction is the same or close to the strain direction, while along these directions, a vacancy has a higher migration energy. All these results indicate that the uniaxial tensile strain can result in the anisotropic formation and migration energies of simple defects in materials.
Received: 20 February 2017      Published: 23 June 2017
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Bg (Metals and alloys)  
  61.72.J- (Point defects and defect clusters)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375242, 11675230 and 91426301.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/076102       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/076102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ning Gao
Fei Gao
Zhi-Guang Wang
[1]Fick A 1855 Ann. Phys. 170 59
[2]Ackland G J, Mendelev M I, Srolovitz, D J, Han S and Barashev A V 2004 J. Phys.: Condens. Matter 16 S2629
[3]Fu C C, Willaime F, and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[4]Johnson R A 1964 Phys. Rev. 134 A1329
[5]Flynn C P 1972 Point Defects and Diffusion (Oxford: Oxford University Press)
[6]Was G 2010 Fundamentals of Radiation Materials Science (Berlin: Springer-Verlag)
[7]Chen J, Gao N, Jung P and Sauvage T 2013 J. Nucl. Mater. 441 216
[8]Chen J, Jung P, Hoffelner W and Ullmaier H 2008 Acta Mater. 56 250
[9]Matthews J R and Finnis M W 1988 J. Nucl. Mater. 159 257
[10]Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X and Pister C 2007 J. Nucl. Mater. 371 176
[11]Andresen P L and Was G S 2012 Compr. Nucl. Mater. 5 177
[12]Kain V 2011 Stress Corrosion Cracking: Theory Practice (Cambridge: Woodhead Publishing Ltd) p 199
[13]Chen Z Z, Kioussis N, Ghoniem N and Seif D 2010 Phys. Rev. B 81 094102
[14]Beeler B, Asta M, Hosemann P and Grønbech-Jensen N 2015 J. Nucl. Mater. 459 159
[15]Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[16]Ullmaier H and Schilling W 1980 Physics of Modern Materials (Vienna: IAEA publication)
[17]Dederichs P H and Schroeder K 1978 Phys. Rev. B 17 2524
[18]Aziz M 1997 Appl. Phys. Lett. 70 2810
Related articles from Frontiers Journals
[1] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 076102
[2] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 076102
[3] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 076102
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 076102
[5] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 076102
[6] Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang, Zhao-Nan Ding, Yu-Guang Chen, Akihiko Kimura. Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing[J]. Chin. Phys. Lett., 2018, 35(5): 076102
[7] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 076102
[8] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 076102
[9] Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang, Bo Liu, Xiao-Yong Zhao, Dong-Yan Chen, Bin Zhang, Hao Wang, Hai-Bo Li, Shi-Gui Zhang, Yu-Ping Jiang, Bing Luo, Xiao-Wen Zhou, Tao Wang, Xiao Yu, Xiao-Yun Le. Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2017, 34(5): 076102
[10] Dong Wang, Ning Gao, W. Setyawan, R. J. Kurtz, Zhi-Guang Wang, Xing Gao, Wen-Hao He, Li-Long Pang. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2016, 33(09): 076102
[11] Shehla H., Ali A. Zongo S. Javed I. Ishaq A. Khizar H. Naseem S. Maaza M.. Fabrication of Amorphous Silver Nanowires by Helium Ion Beam Irradiation[J]. Chin. Phys. Lett., 2015, 32(09): 076102
[12] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 076102
[13] WANG Hai-Jiao, LI Yu-Dong, GUO Qi, MA Li-Ya, WEN Lin, WANG Bo. Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(5): 076102
[14] WANG Kun, QI Qiang, CHENG Gui-Jun, SHI Li-Qun. Microstructure and Mechanical Properties of Ti3SiC2 Irradiated by Carbon Ions[J]. Chin. Phys. Lett., 2014, 31(07): 076102
[15] PENG Chao, ZHANG Zheng-Xuan, HU Zhi-Yuan, HUANG Hui-Xiang, NING Bing-Xu, BI Da-Wei. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors[J]. Chin. Phys. Lett., 2013, 30(9): 076102
Viewed
Full text


Abstract