Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 075201    DOI: 10.1088/0256-307X/34/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers
Hong-Yu Guo1,2, Li-Feng Wang2,3, Wen-Hua Ye2,3**, Jun-Feng Wu2, Wei-Yan Zhang2
1Graduate School, China Academy of Engineering Physics, Beijing 100088
2Institute of Applied Physics and Computational Mathematics, Beijing 100094
3HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye et al  2017 Chin. Phys. Lett. 34 075201
Download: PDF(577KB)   PDF(mobile)(578KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The linear growth of Rayleigh–Taylor instability (RTI) of two superimposed finite-thickness fluids in a gravitational field is investigated analytically. Coupling evolution equations for perturbation on the upper, middle and lower interfaces of the two stratified fluids are derived. The growth rate of the RTI and the evolution of the amplitudes of perturbation on the three interfaces are obtained by solving the coupling equations. It is found that the finite-thickness fluids reduce the growth rate of perturbation on the middle interface. However, the finite-thickness effect plays an important role in perturbation growth even for the thin layers which will cause more severe RTI growth. Finally, the dependence of the interface position under different initial conditions are discussed in some detail.
Received: 12 January 2017      Published: 23 June 2017
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11275031, 11475034, 11575033 and 11274026, and the National Basic Research Program of China under Grant No 2013CB834100.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/075201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Yu Guo
Li-Feng Wang
Wen-Hua Ye
Jun-Feng Wu
Wei-Yan Zhang
[1]Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2]Taylor G 1950 Proc. R. Soc. London Ser. A 201 192
[3]Atzeni S et al 2004 The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater (Oxford University)
[4]Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755
[5]Lindl J D et al 2004 Phys. Plasmas 11 339
[6]Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
[7]Guo H Y et al 2014 Chin. Phys. Lett. 31 044702
[8]Wang L F, Wu J F, Guo H Y, Ye W H, Liu J, Zhang W Y and He X T 2015 Phys. Plasmas 22 082702
[9]Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[10]Ye W H, Wang L F and He X T 2010 Phys. Plasmas 17 122704
[11]Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
[12]Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
[13]Mikaelian K O 1982 Phys. Rev. Lett. 48 1365
[14]Mikaelian K O 1982 Phys. Rev. A 26 2140
[15]Mikaelian K O 1983 Phys. Rev. A 28 1637
[16]Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203
[17]Goncharov V N et al 2000 Phys. Plasmas 7 5118
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 075201
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 075201
[3] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 075201
[4] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 075201
[5] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 075201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 075201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 075201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 075201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 075201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 075201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 075201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 075201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 075201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 075201
Viewed
Full text


Abstract