FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes |
Yang Chen1,2,3, Yu-Fei Wang1,2,3,4, Hong-Wei Qu1,2,3, Yu-Fang Zhang2, Yun Liu1,2,3, Xiao-Long Ma1,2,3, Xiao-Jie Guo1,2,3, Peng-Chao Zhao1,2,3, Wan-Hua Zheng1,2,3,4** |
1State Key Laboratory on Integrated Optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 4College of Future Technology, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Yang Chen, Yu-Fei Wang, Hong-Wei Qu et al 2017 Chin. Phys. Lett. 34 074205 |
|
|
Abstract The coupling efficiency of the beam combination and the fiber-coupled module is limited due to the large vertical divergent angle of conventional semiconductor laser diodes. We present a high coupling efficiency module using photonic-band-crystal (PBC) laser diodes with narrow vertical divergent angles. Three PBC single-emitter laser diodes are combined into a fiber with core diameter of 105 μm and numerical aperture of 0.22. A high coupling efficiency of 94.4% is achieved and the brightness is calculated to be 1.7 MW/(cm$^{2}\cdot$sr) with the injection current of 8 A.
|
|
Received: 17 March 2017
Published: 23 June 2017
|
|
PACS: |
42.15.Eq
|
(Optical system design)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
42.62.Cf
|
(Industrial applications)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61535013, 61321063 and 61404133, the National Key Research and Development Program of China under Grant Nos 2016YFB0402203, 2016YFB0401804 and 2016YFA0301102, and the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014096. |
|
|
[1] | Napartovich A P, Elkin N N and Vysotsky D V 2010 AIP Conf. Proc. 1278 869 | [2] | Zhou P, Liu Z J and Wang X L 2009 Appl. Phys. Lett. 94 231106 | [3] | Yang Y Y, Zhao Y P and Wang L R 2015 J. Appl. Phys. 117 103108 | [4] | Zhu H B, Liu Y and Wang L J 2011 Chin. J. Lumin. 32 11 (in Chinese) | [5] | Chen H N, Zou Y G and Xu L 2014 J. Changchun University of Science and Technology 37 01 (in Chinese) | [6] | Hemenway M, Urbanek W and Hoener K 2014 Proc. SPIE 8961 89611V | [7] | Fritsche H, Koch R, Krusche B and Ferrario F 2014 Proc. SPIE 9134 91340U | [8] | Berk Y, Levy M and Rappaport N 2014 Proc. SPIE 8965 89650M | [9] | Zhu H B, Hao M M and Peng H Y 2012 Chin. J. Lasers 39 0502001 (in Chinese) | [10] | Sh Y, Ren Y X and An Zh F 2016 Infrared Laser Eng. 45 S206004 (in Chinese) | [11] | Qi Y F, Zhao P F and Chen Q 2016 Proc. SPIE 10152 101521H | [12] | Kruschke B, Fritsche H and Kern H 2015 Proc. SPIE 9346 934614 | [13] | Heinemann S, Fritsche H and Kruschke B 2013 Proc. SPIE 8605 86050Q | [14] | Liu R, Jiang X C and Yang T 2015 Proc. SPIE 9348 93480V | [15] | Zhao S Y, Qu H W and Zheng W H 2016 Proc. SPIE 10019 100190A | [16] | Liu L, Qu H W and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107 | [17] | Hou L P, Haji M and Akbar J 2012 IEEE Photon. Technol. Lett. 24 1057 | [18] | Liu L, Qu H W and Zheng W H 2014 Appl. Phys. Lett. 105 231110 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|