Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 074203    DOI: 10.1088/0256-307X/34/7/074203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Frequency Stabilization of a Microsecond Pulse Sodium Guide Star Laser with a Tilt- and Temperature-Tuned Etalon
Chang Xu1,4, Jun-Wei Zuo1**, Qi Bian1,5, Chuan Guo1,5, Yong Bo1, Lu Feng2, Kai Jin3, Kai Wei3, Hong-Wei Gao1, Sheng Zhang4, Yuan-Qin Xia4**, Qin-Jun Peng1, Zu-Yan Xu1
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100190
3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
4National Key Lab of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080
5University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Chang Xu, Jun-Wei Zuo, Qi Bian et al  2017 Chin. Phys. Lett. 34 074203
Download: PDF(1124KB)   PDF(mobile)(1123KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A frequency stabilization approach is introduced for the microsecond pulse sodium beacon laser using an intra-cavity tilt- and temperature-tuned etalon based on a computer-controlled feedback system connected with a fast high-precision wavelength meter. The frequency stability of the sodium beacon lasers is compared with and without feedback loop controlling. The output wavelength of the laser is locked to the sodium D$_{2a}$ absorption line (589.159 nm) over 12 h with the feedback loop controlling technology. As a result, the sodium laser guide star is successfully observed by the telescope of National Astronomical Observatories at Xinglong. This approach can also be used for other pulses and continuous-wave lasers for the frequency stabilization.
Received: 16 March 2017      Published: 23 June 2017
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.68.Bz (Atmospheric turbulence effects)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040, the National Instrumentation Program of China under Grant No 2012YQ120048, and the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/074203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/074203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang Xu
Jun-Wei Zuo
Qi Bian
Chuan Guo
Yong Bo
Lu Feng
Kai Jin
Kai Wei
Hong-Wei Gao
Sheng Zhang
Yuan-Qin Xia
Qin-Jun Peng
Zu-Yan Xu
[1]Clare R M and Dam M A 2007 Opt. Express 15 4711
[2]Jin K et al 2015 Publ. Astron. Soc. Pac. 127 749
[3]Moyssaoui N et al 2010 Astron. Astrophys. 511 A31
[4]d'Orgeville C et al 1999 Proc. SPIE 3762 150
[5]Wizinowich P L et al 2006 Publ. Astron. Soc. Pacific 118 297
[6]Hayano Y et al 2006 Proc. SPIE 6272 627247
[7]Joyce R et al 2006 Proc. SPIE 6272 62721H
[8]Diolaiti E et al 2010 Proc. SPIE 7736 77360R
[9]Peter W M et al 1999 J. Opt. Soc. Am. A 16 2555
[10]Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D and Xu Z Y 2014 Chin. Phys. B 23 094208
[11]Brakley L C 1992 J. Opt. Soc. Am. B 9 1931
[12]Jiang Y Y et al 2011 Nat. Photon. 5 158
[13]Bohlouli-Zanjani P, Afrousheh K and Martin J D D 2006 Rev. Sci. Instrum. 77 093105
[14]Beck T et al 2016 Opt. Lett. 41 4186
[15]Xia Y et al 2015 Opt. Commun. 354 52
[16]Trickl T and Vogelmann H 2004 22ND International Laser Radar Conference, vols 1 and 2 561 175
[17]Kobtsev S et al 2007 Appl. Opt. 46 5840
[18]Mahakud R et al 2012 Opt. Laser Technol. 44 412
[19]Bienfang J C et al 2003 Opt. Lett. 28 2219
[20]Cabaret L et al 2001 Opt. Lett. 26 983
[21]Gibson B M and Mccall B J 2015 Opt. Lett. 40 2696
Related articles from Frontiers Journals
[1] Jian-Wang Jiang, Shao-Bo Fang, Zi-Yue Zhang, Jiang-Feng Zhu, Hai-Nian Han, Guo-Qing Chang, Zhi-Yi Wei. Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator[J]. Chin. Phys. Lett., 2020, 37(5): 074203
[2] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 074203
[3] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 074203
[4] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 074203
[5] Xiao Chen, Xiao-Lei Zhu, Shi-Guang Li, Xiu-Hua Ma, Wei Xie, Ji-Qiao Liu, Wei-Biao Chen, Ren Zhu. Frequency Stabilization of Pulsed Injection-Seeded OPO Based on Optical Heterodyne Technique[J]. Chin. Phys. Lett., 2018, 35(2): 074203
[6] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 074203
[7] Jing Wu, You-Lun Ju, Tong-Yu Dai, Zhen-Guo Zhang, Bao-Quan Yao, Yue-Zhu Wang. Development of a Single-Longitudinal-Mode Ho:YAG Laser Based on Corner Cube[J]. Chin. Phys. Lett., 2016, 33(04): 074203
[8] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 074203
[9] BAI Fang, CHEN Xin-Yu, LIU Jing-Liang, WU Chun-Ting, HUANG Zhu-Long, JIN Guang-Yong. A Narrow Linewidth Continuous Wave Ho:YAG Laser Pumped by a Tm:YLF Laser[J]. Chin. Phys. Lett., 2015, 32(11): 074203
[10] WU Jing, JU You-Lun, DAI Tong-Yu, LIU Wei, YAO Bao-Quan, WANG Yue-Zhu. A Linearly Polarized Ho:YAG Laser at 2.09 μm with Corner Cube Cavity Pumped by Tm:YLF Laser[J]. Chin. Phys. Lett., 2015, 32(07): 074203
[11] KE Qing, TAN Shao-Yang, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. Optimization of High Power 1.55-μm Single Lateral Mode Fabry–Perot Ridge Waveguide Lasers[J]. Chin. Phys. Lett., 2015, 32(06): 074203
[12] LU Ting-Ting, MA Jian, HUANG Min-Jie, YANG Qi, ZHU Xiao-Lei, CHEN Wei-Biao. High-Efficient Nd:YLF Q-Switched Laser Operating at 523.5 nm[J]. Chin. Phys. Lett., 2014, 31(07): 074203
[13] DUAN Xiao-Ming, DING Yu, YAO Bao-Quan, DAI Tong-Yu, LI Ying-Yi, JIA Fu-Li. A Stable Diffusion-Bonded Tm:YLF Bulk Laser with High Power Output at a Wavelength of 1889.5 nm[J]. Chin. Phys. Lett., 2014, 31(07): 074203
[14] ZHAI Teng, TAN Shao-Yang, LU Dan, WANG Wei, ZHANG Rui-Kang, JI Chen. High Power 1060 nm Distributed Feedback Semiconductor Laser[J]. Chin. Phys. Lett., 2014, 31(2): 074203
[15] TAN Shao-Yang, ZHAI Teng, LU Dan, WANG Wei, ZHANG Rui-Kang, JI Chen. Fabrication and Characterization of High Power 1064-nm DFB Lasers[J]. Chin. Phys. Lett., 2013, 30(11): 074203
Viewed
Full text


Abstract