FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Frequency Stabilization of a Microsecond Pulse Sodium Guide Star Laser with a Tilt- and Temperature-Tuned Etalon |
Chang Xu1,4, Jun-Wei Zuo1**, Qi Bian1,5, Chuan Guo1,5, Yong Bo1, Lu Feng2, Kai Jin3, Kai Wei3, Hong-Wei Gao1, Sheng Zhang4, Yuan-Qin Xia4**, Qin-Jun Peng1, Zu-Yan Xu1 |
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100190 3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 4National Key Lab of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 5University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Chang Xu, Jun-Wei Zuo, Qi Bian et al 2017 Chin. Phys. Lett. 34 074203 |
|
|
Abstract A frequency stabilization approach is introduced for the microsecond pulse sodium beacon laser using an intra-cavity tilt- and temperature-tuned etalon based on a computer-controlled feedback system connected with a fast high-precision wavelength meter. The frequency stability of the sodium beacon lasers is compared with and without feedback loop controlling. The output wavelength of the laser is locked to the sodium D$_{2a}$ absorption line (589.159 nm) over 12 h with the feedback loop controlling technology. As a result, the sodium laser guide star is successfully observed by the telescope of National Astronomical Observatories at Xinglong. This approach can also be used for other pulses and continuous-wave lasers for the frequency stabilization.
|
|
Received: 16 March 2017
Published: 23 June 2017
|
|
PACS: |
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.68.Bz
|
(Atmospheric turbulence effects)
|
|
42.68.Wt
|
(Remote sensing; LIDAR and adaptive systems)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040, the National Instrumentation Program of China under Grant No 2012YQ120048, and the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2. |
|
|
[1] | Clare R M and Dam M A 2007 Opt. Express 15 4711 | [2] | Jin K et al 2015 Publ. Astron. Soc. Pac. 127 749 | [3] | Moyssaoui N et al 2010 Astron. Astrophys. 511 A31 | [4] | d'Orgeville C et al 1999 Proc. SPIE 3762 150 | [5] | Wizinowich P L et al 2006 Publ. Astron. Soc. Pacific 118 297 | [6] | Hayano Y et al 2006 Proc. SPIE 6272 627247 | [7] | Joyce R et al 2006 Proc. SPIE 6272 62721H | [8] | Diolaiti E et al 2010 Proc. SPIE 7736 77360R | [9] | Peter W M et al 1999 J. Opt. Soc. Am. A 16 2555 | [10] | Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D and Xu Z Y 2014 Chin. Phys. B 23 094208 | [11] | Brakley L C 1992 J. Opt. Soc. Am. B 9 1931 | [12] | Jiang Y Y et al 2011 Nat. Photon. 5 158 | [13] | Bohlouli-Zanjani P, Afrousheh K and Martin J D D 2006 Rev. Sci. Instrum. 77 093105 | [14] | Beck T et al 2016 Opt. Lett. 41 4186 | [15] | Xia Y et al 2015 Opt. Commun. 354 52 | [16] | Trickl T and Vogelmann H 2004 22ND International Laser Radar Conference, vols 1 and 2 561 175 | [17] | Kobtsev S et al 2007 Appl. Opt. 46 5840 | [18] | Mahakud R et al 2012 Opt. Laser Technol. 44 412 | [19] | Bienfang J C et al 2003 Opt. Lett. 28 2219 | [20] | Cabaret L et al 2001 Opt. Lett. 26 983 | [21] | Gibson B M and Mccall B J 2015 Opt. Lett. 40 2696 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|