NUCLEAR PHYSICS |
|
|
|
|
A Photonuclear Reaction Model Based on IQMD in Intermediate-Energy Region |
Bo-Song Huang1,2, Yu-Gang Ma1** |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Bo-Song Huang, Yu-Gang Ma 2017 Chin. Phys. Lett. 34 072401 |
|
|
Abstract A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo-absorption cross section and $\pi$ meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann–Uehling–Uhlenbeck model.
|
|
Received: 12 April 2017
Published: 23 June 2017
|
|
PACS: |
24.10.-i
|
(Nuclear reaction models and methods)
|
|
25.20.-x
|
(Photonuclear reactions)
|
|
25.20.Dc
|
(Photon absorption and scattering)
|
|
25.20.Lj
|
(Photoproduction reactions)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11421505 and 11220101005, the National Basic Research Program of China under Grant No 2014CB845401, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16. |
|
|
[1] | Weller H R, Mohammad A W, Gao H Y et al 2009 Prog. Part. Nucl. Phys. 62 257 | [2] | Filipescu D, Anzalone A, Balabanski D L et al 2015 Eur. Phys. J. A 51 185 | [3] | Wu H L, Chen J H, Liu B et al 2015 Nucl. Sci. Tech. 26 050103 | [4] | Luo W, Balabanski D L and Filipescu D 2016 Nucl. Sci. Tech. 27 113 | [5] | Muramatsu N, Chen J Y, Chang W C et al 2009 Phys. Rev. Lett. 103 012001 | [6] | Shimizu H and Muramatsu N 2017 Nucl. Phys. News 27 19 | [7] | Utsunomiya H, Hashimoto S and Miyamoto S 2015 Nucl. Phys. News 25 25 | [8] | Hicks K et al 2009 Phys. Rev. Lett. 102 012501 | [9] | Nakano T (for the LEPS Collaboration) 2003 Nucl. Phys. A 721 112c | [10] | Tavares O A P, Duarte S B, Deppman A et al 2004 J. Phys. G 30 377 | [11] | He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2014 Phys. Rev. Lett. 113 032506 | [12] | He W B et al 2014 Nucl. Tech. 37 100511 (in Chinese) | [13] | He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2016 Phys. Rev. C 94 014301 | [14] | Levinger J S 1951 Phys. Rev. 84 43 | [15] | Maruyama T, Niita K and Iwamoto A 1996 Phys. Rev. C 53 297 | [16] | Huang B S, Ma Y G and He W B 2017 Phys. Rev. C 95 034606 | [17] | Huang B S, Ma Y G and He W B 2017 Eur. Phys. J. A 53 119 | [18] | Aichelin J 1991 Phys. Rep. 202 233 | [19] | Hartnack Ch, Puri R K et al 1998 Eur. Phys. J. A 1 151 | [20] | Peilert G, Stöcker H, Rosenhauer A et al 1989 Phys. Rev. C 39 1402 | [21] | Aichelin J, Rosenhauer A, Peilert G et al 1987 Phys. Rev. Lett. 58 1926 | [22] | Ma Y G and Shen W Q 1995 Phys. Rev. C 51 710 | [23] | Ma Y G, Shen W Q and Zhu Z Y 1995 Phys. Rev. C 51 1029 | [24] | Yan T Z, Ma Y G, Cai X Z et al 2006 Phys. Lett. B 638 50 | [25] | Wang T T, Lv M, Ma Y G et al 2015 Chin. Phys. Lett. 32 062501 | [26] | Xing Y Z et al 2016 Chin. Phys. Lett. 33 122501 | [27] | Buss O, Gaitanos T, Gallmeister K et al 2012 Phys. Rep. 513 1 | [28] | Bertsch G F and Das Gupta S 1988 Phys. Rep. 160 189 | [29] | Ma Y G et al 1993 Phys. Rev. C 48 R1492 | [30] | Zhang F 2016 Chin. Phys. Lett. 33 012501 | [31] | Carrasco R C et al 1997 Nucl. Phys. A 616 575 | [32] | Gomez T J A et al 1996 Nucl. Phys. A 600 413 | [33] | Drechsel D and Tiator L 1992 J. Phys. G 18 449 | [34] | Nacher J C et al 2001 Nucl. Phys. A 695 295 | [35] | Messchendorp J G et al 2002 Phys. Rev. Lett. 89 222302 | [36] | Bianchi N et al 1996 Phys. Rev. C 54 1688 | [37] | Gabler A R et al 1994 Nucl. Instrum. Methods Phys. Res. Sect. A 346 168 | [38] | Krusche B et al 2004 Eur. Phys. J. A 22 277 | [39] | Darwish E M 2015 Chin. Phys. Lett. 32 122501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|