Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070303    DOI: 10.1088/0256-307X/34/7/070303
GENERAL |
Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate
Yan-Na Li, Wei-Dong Li**
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
Cite this article:   
Yan-Na Li, Wei-Dong Li 2017 Chin. Phys. Lett. 34 070303
Download: PDF(714KB)   PDF(mobile)(702KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the dynamics of a two-mode Bose–Hubbard model with phase dissipation, based on the master equation. An analytical solution is presented with nonzero asymmetry and phase noise. The effects of asymmetry and phase noise play a contrasting role in the dynamics. The asymmetry makes the oscillation fast, while phase noise enlarges the period. The conditions for the cases of fast decay and oscillation are presented. As a possible application, the dynamical evolution of the population for cold atomic gases with synthetic gauge interaction, which can be understood as two-mode dynamics in momentum space, is predicted.
Received: 09 February 2017      Published: 23 June 2017
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  67.85.Fg (Multicomponent condensates; spinor condensates)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070303       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Na Li
Wei-Dong Li
[1]Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2]Breuer H P 2004 Phys. Rev. A 69 022115
[3]Strunz W T and Yu T 2004 Phys. Rev. A 69 052115
[4]Nikola Buric 2011 Chin. Phys. B 20 120306
[5]Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[6]Smerzi A et al 1997 Phys. Rev. Lett. 79 4950
[7]Raghavan S et al 1999 Phys. Rev. A 59 620
[8]Raghavan S, Smerzi A and Kenkre V M 1999 Phys. Rev. A 60 R1787
[9]Albiez M et al 2005 Phys. Rev. Lett. 95 010402
[10]Salasnich L 1999 Phys. Rev. A 61 015601
[11]Greiner M et al 2002 Nature 415 39
[12]Cole W S et al 2012 Phys. Rev. Lett. 109 085302
[13]Anglin J R 1997 Phys. Rev. Lett. 79 6
[14]Ruostekoski J and Walls D F 1998 Phys. Rev. A 58 R50
[15]Li Yun, Castin Y and Sinatra A 2008 Phys. Rev. Lett. 100 210401
[16]Khodorkovsky Y, Kurizki G and Vardi A 2008 Phys. Rev. Lett. 100 220403
[17]Huelga S F and Plenio M B 2007 Phys. Rev. Lett. 98 170601
[18]Kraus B et al 2008 Phys. Rev. A 78 042307
[19]Diehl S et al 2008 Nat. Phys. 4 878
[20]Syassen N et al 2008 Science 320 1329
[21]Garcia-Ripoll J J et al 2009 New J. Phys. 11 013053
[22]Jia X Y, Li W D and Liang J Q 2008 Phys. Rev. A 78 023613
[23]Yang H W and Zuo W 2007 Chin. Phys. Lett. 24 620
[24]Witthaut D, Trimborn F and Wimberger S 2009 Phys. Rev. A 79 033621
[25]Wang W, Fu L B and Yi X X 2007 Phys. Rev. A 75 045601
[26]Witthaut D, Trimborn F and Wimberger S 2008 Phys. Rev. Lett. 101 200402
[27]Trimborn F, Witthaut D and Wimberger S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 171001
[28]Dennis Dast et al 2016 Phys. Rev. A 94 053601
[29]Lin Y J et al 2011 Nature 471 83
[30]Zhang J Y et al 2012 Phys. Rev. Lett. 109 115301
[31]Wang P J et al 2012 Phys. Rev. Lett. 109 095301
[32]Cheuk L W et al 2012 Phys. Rev. Lett. 109 095302
[33]Gati R et al 2006 Phys. Rev. Lett. 96 130404
[34]Gati R, Esteve J et al 2006 New J. Phys. 8 189
[35]Rajagopal K K 2015 Physica A 429 231
[36]Rajagopal K K and Muniandy S V 2015 Physica A 440 118
[37]Shin Y et al 2004 Phys. Rev. Lett. 92 050405
[38]Hall B V et al 2007 Phys. Rev. Lett. 98 030402
[39]Anglin J R and Vardi A 2001 Phys. Rev. A 64 013605
[40]Widera A et al 2006 New J. Phys. 8 152
[41]Taesoo K et al 1998 Phys. Rev. A 57 4004
[42]Zhang Z X, Chen L and Bao X Y 2010 Opt. Express 18 8261
[43]Wang J N and Nie J S 2015 Proc. SPIE 9671 96711V
[44]Holland M and Burnett K 1993 Phys. Rev. Lett. 71 1355
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 070303
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 070303
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070303
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 070303
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 070303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 070303
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 070303
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 070303
[11] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 070303
[12] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 070303
[13] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 070303
[14] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 070303
[15] YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui. Coherent Destruction of Tunneling of Dipolar Bosonic Gas[J]. Chin. Phys. Lett., 2014, 31(1): 070303
Viewed
Full text


Abstract