Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 068801    DOI: 10.1088/0256-307X/34/6/068801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications
Du-Xiang Wang, Ming-Hui Song**, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu
Tianjin San'an Optoelectronics Co., LTD., Tianjin 300384
Cite this article:   
Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi et al  2017 Chin. Phys. Lett. 34 068801
Download: PDF(1789KB)   PDF(mobile)(1793KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Metamorphic In$_{0.55}$Ga$_{0.45}$P/In$_{0.06}$Ga$_{0.94}$As/Ge triple-junction (3J-MM) solar cells are grown on Ge (100) substrates via metal organic chemical vapor deposition. Epi-structural analyses such as high resolution x-ray diffraction, photoluminence, cathodoluminescence and HRTEM are employed and the results show that the high crystal quality of 3J-MM solar cells is obtained with low threading dislocation density of graded buffer (an average value of 6.8$\times$10$^{4}$/cm$^{2})$. Benefitting from the optimized bandgap combination, under one sun, AM0 spectrum, 25$^{\circ}\!$C conditions, the conversion efficiency is achieved about 32%, 5% higher compared with the lattice-matched In$_{0.49}$Ga$_{0.51}$P/In$_{0.01}$Ga$_{0.99}$As/Ge triple junction (3J-LM) solar cell. Under 1-MeV electron irradiation test, the degradation of the EQE and $I$–$V$ characteristics of 3J-MM solar cells is at the same level as the 3J-LM solar cell. The end-of-life efficiency is $\sim$27.1%. Therefore, the metamorphic triple-junction solar cell may be a promising candidate for next-generation space multi-junction solar cells.
Received: 07 February 2017      Published: 23 May 2017
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  88.40.jp (Multijunction solar cells)  
  84.60.Jt (Photoelectric conversion)  
Fund: Supported by the Grand from Tianjin Little Giant Fund under Grant No 14ZXLJGX00400, and the Tianjin Science and Technology Support Plan under Grant No 16YFZCGX00030.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/068801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/068801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Du-Xiang Wang
Ming-Hui Song
Jing-Feng Bi
Wen-Jun Chen
Sen-Lin Li
Guan-Zhou Liu
Ming-Yang Li
Chao-Yu Wu
[1]http://boeing.mediaroom.com/2001-11-26-Successful-Launch-Sends-Boeing-Built-DIRECTV-4S-Satellite-to-Orbit
[2]King R R et al 2002 Proc. 29th IEEE Photovoltaic Specialists Conference p 776
[3]Strobl G F X et al 2012 Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition p 104
[4]Kurtz S R et al 2002 Appl. Phys. Lett. 80 1379
[5]Zhang H et al 2010 Sci. Chin. Technol. Sci. 53 2569
[6]King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183516
[7]Fuhrmann D, Meusel M, Ebel L, Guter W, Kubera T, Köstler W and Strobl G 2013 Proc. 9th International Conference on Concentrator Photovoltaic Systems p 1
[8]King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Krut D D, Ermer J H, Sherif R A and Karam N H 2007 Adv. OptoElectron. 2007 29523
[9]Fetzer C M, King R R, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Ermer J H, Romero M J and Karam N H 2004 J. Cryst. Growth 261 341
[10]Dimroth F, Schubert U and Bett A W 2000 IEEE Electron Device Lett. 21 209
[11]Bett A W, Baur C, Dimroth F and Schöne J 2005 Mater. Res. Soc. Symp. Proc. 836 L6.4
[12]King R R, Haddad M, Isshiki T, Colter P, Ermer J, Yoon H, Joslin D E and Karam N H 2000 Proc. 28th IEEE Photovoltaic Specialists Conference p 982
[13]Meusel M, Baur C, Guter W, Hernle M and Dimroth F 2005 Proc. 20th European Photovoltaic Solar Energy Conference and Exhibition p 20
[14]Walters R J, Messenger S R, Cotal H R, Xapsos M A, Wojtczuk S J, Serreze H B and Summers G P 1997 J. Appl. Phys. 82 2164
[15]Hu J M, Wu Y Y, Qian Y, Yang D Z and He S Y 2009 Acta Phys. Sin. 58 5051 (in Chinese)
Related articles from Frontiers Journals
[1] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 068801
[2] Yue Zhang, Cao Yu, Miao Yang, Lin-Rui Zhang, Yong-Cai He, Jin-Yan Zhang, Xi-Xiang Xu, Yong-Zhe Zhang, Xue-Mei Song, Hui Yan. Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(3): 068801
[3] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 068801
[4] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Na Peng, Zhi-Yong Wang. GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency[J]. Chin. Phys. Lett., 2016, 33(10): 068801
[5] XIAO Man-Jun, SHEN Wen-Fei, WANG Jun-Yi, HAN Liang-Liang, CHEN Wei-Chao, BAO Xi-Chang, YANG Ren-Qiang, ZHU Wei-Guo. Efficient Annealing-Free P3HT:PC61BM-Based Organic Solar Cells by Using a Novel Solvent Additive without a Halogen or Sulphur Atom[J]. Chin. Phys. Lett., 2015, 32(02): 068801
[6] Sunil H. Chaki, Mahesh D. Chaudhary, M. P. Deshpande. Effect of Indium and Antimony Doping on SnS Photoelectrochemical Solar Cells[J]. Chin. Phys. Lett., 2014, 31(10): 068801
[7] LIU Jian, WU Jiang, SHAO Shu-Yan, XIE Zhi-Yuan, GUO Shi-Jie. Nanoscale Phase Separation-Induced Suppression of Geminate Recombination in Low Bandgap Polymer-Fullerene Solar Cells[J]. Chin. Phys. Lett., 2014, 31(05): 068801
[8] HOU Teng, LIANG Chun-Jun, ZHANG Fu-Jun, HE Zhi-Qun, SUN Kai. Laminated Polymer Solar Cells with PEDOT:PSS Film as Anode[J]. Chin. Phys. Lett., 2014, 31(2): 068801
[9] YU Xiao-Hong, SUN Zhao-Zong, LIAN Jie, LI Yi-Tan, CHEN Yan-Xue, GAO Shang, WANG Xiao, WANG Ying-Shun, ZHAO Ming-Lin. Efficient Natural Dye-Sensitized Solar Cells Based on Spin-Coated TiO2 Anode Materials[J]. Chin. Phys. Lett., 2013, 30(11): 068801
[10] FANG Gang, WU Jiang, FU Ying-Ying, MENG Bin, XIE Zhi-Yuan, GUO Shi-Jie . Improved Charge-Collection Efficiency in PCDTBT:PC71BM-Based Solar Cells via CS2 Solvent Vapor Annealing[J]. Chin. Phys. Lett., 2013, 30(6): 068801
[11] LI Liang, ZHAO De-Gang, JIANG De-Sheng, LIU Zong-Shun, CHEN Ping, WU Liang-Liang, LE Ling-Cong, WANG Hui, YANG Hui. The Effects of a Low-Temperature GaN Interlayer on the Performance of InGaN/GaN Solar Cells[J]. Chin. Phys. Lett., 2013, 30(2): 068801
[12] ZHANG Chun-Lei, DU Hui-Jing, ZHU Jian-Zhuo, XU Tian-Fu, FANG Xiao-Yong. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells[J]. Chin. Phys. Lett., 2012, 29(12): 068801
[13] WANG Gui-Qiang**, HUANG Cong-Cong, XING Wei, ZHUO Shu-Ping . Hierarchical Porous Carbon Counter Electrode for Dye-Sensitized Solar Cells[J]. Chin. Phys. Lett., 2011, 28(3): 068801
[14] Hai-Long Huang, Hui Xia, Zhi-Bo Guo, Ding Xie, Hong-Jian Li. Design of Broadband Metamaterial Absorbers for Permittivity Sensitivity and Solar Cell Application[J]. Chin. Phys. Lett., 2017, 34(11): 068801
Viewed
Full text


Abstract