CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures |
Wen-Rong Xie, Bin Liu**, Tao Tao, Guo-Gang Zhang, Bao-Hua Zhang, Zi-Li Xie**, Peng Chen, Dun-Jun Chen, Rong Zhang |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Wen-Rong Xie, Bin Liu, Tao Tao et al 2017 Chin. Phys. Lett. 34 068103 |
|
|
Abstract A sequential deposition method is developed, where the hybrid organic–inorganic halide perovskite (CH$_{3}$NH$_{3}$Pb (I$_{1-x}$Br$_{x}$)$_{3}$) is synthesized using precursor solutions containing CH$_{3}$NH$_{3}$I and PbBr$_{2}$ with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy. Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746 nm to 770 nm with the increase of the reaction time, on account of the exchanges between I$^{-}$ ions and Br$^{-}$ ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
|
|
Received: 27 February 2017
Published: 23 May 2017
|
|
PACS: |
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
61.46.Hk
|
(Nanocrystals)
|
|
|
|
|
[1] | Liu J Y, Xue Y Z, Wang Z Y, Xu Z Q, Zheng C X, Weber B, Song J C, Wang Y S, Lu Y R and Zhang Y P 2016 ACS Nano 10 3536 | [2] | Chen Q, De Marco N, Yang Y, Song T B, Chen C C, Zhao H X, Hong Z R, Zhou H P and Yang Y 2015 Nano Today 10 355 | [3] | Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341 | [4] | Zhang T Y, Yang M J, Benson E E, Li Z J, van de Lagemaat J, Luther J M, Yan Y F, Zhu K and Zhao Y X 2015 Chem. Commun. 51 7820 | [5] | Zhuang S W, Xu D Q, Xu J X, Wu B, Zhang Y T, Dong X, Li G X, Zhang B L and Du G T 2017 Chin. Phys. B 26 017802 | [6] | Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391 | [7] | Green M A, HoBaillie A and Snaith H J 2014 Nat. Photon. 8 506 | [8] | Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao Lei and Huang J S 2015 Science 347 967 | [9] | Dong J, Xu X, Shi J J, Li D M, Luo Y H, Meng Q B and Chen Q 2015 Chin. Phys. Lett. 32 078401 | [10] | Wong A B, Lai M L, Eaton S W, Yu Y, Lin E, Dou L, Fu A and Yang P D 2015 Nano Lett. 15 5519 | [11] | Chen Y, Yang S, Chen X, Zheng Y C, Hou Y, Li Y H, Zeng H D and Yang H G 2015 J. Mater. Chem. 3 15854 | [12] | Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M and Credgington D 2014 Nat. Nanotechnol. 9 687 | [13] | Sutherland B R, Hoogland S, Adachi M M, Wong C T O and Sargent E H 2014 ACS Nano 8 10947 | [14] | Zhu H M, Fu Y P, Meng F, Wu X X, Gong Z Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636 | [15] | Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316 | [16] | Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 | [17] | McGehee M 2014 Nat. Mater. 13 845 | [18] | Kumar V B, Gouda L, Porat Z and Gedanken A 2016 Ultrason. Sonochem. 32 54 | [19] | Yang S, Zheng Y C, Hou Y, Chen X, Chen Y, Wang Y, Zhao H J and Yang H G 2014 Chem. Mater. 26 6705 | [20] | Zhou H P, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y S and Yang Y 2014 Science 345 542 | [21] | Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088 | [22] | Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, HumphryBaker R, Yum J H, E Moser J, Gratzel M and Park N G 2012 Sci. Rep. 2 591 | [23] | Fu Y P, Meng F, Rowley M B, Thompson B J, Shearer M J, Ma D W, Hamers R J, Wright J C and Jin S 2015 J. Am. Chem. Soc. 137 5810 | [24] | Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H and Yang Y 2013 J. Am. Chem. Soc. 136 622 | [25] | He Y Y, Li Y, Yang X G, Lu K, Liu S Z, Gu L Y and Zheng Z 2016 Appl. Surf. Sci. 389 540 | [26] | Ball J M, Lee M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739 | [27] | Liu D Y and Kelly T L 2013 Nat. Photon. 8 133 | [28] | Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, K Nazeeruddin M and J Bolink H 2013 Nat. Photon. 8 128 | [29] | Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 | [30] | Im J H, Luo J S, Franckevicius M, Pellet N, Gao P, Moehl T, Mohammed Z, Nazeeruddin M K, Gratzel M and Park N G 2015 Nano Lett. 15 2120 | [31] | Zhu P C, Gu S, Shen X P, Xu N, Tan Y L, Zhuang S D, Deng Y, Lu Z D, Wang Z L and Zhu J 2016 Nano Lett. 16 871 | [32] | Liu M Z, Johnston M B and Snaith H J 2013 Nature 501 395 | [33] | Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764 | [34] | Horvath E, Spina M, Szekrenyes Z, Kamaras K, Gaal R, Gachet D and Forro L 2014 Nano Lett. 14 6761 | [35] | Tavakoli M M, Waleed A, Gu L L, Zhang D Q, Tavakoli R, Lei B B, Su W J, Fang F and Fan Z Y 2017 Nanoscale (accepted) | [36] | Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y and Jen A K Y 2014 Adv. Mater. 26 6454 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|