Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 068103    DOI: 10.1088/0256-307X/34/6/068103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures
Wen-Rong Xie, Bin Liu**, Tao Tao, Guo-Gang Zhang, Bao-Hua Zhang, Zi-Li Xie**, Peng Chen, Dun-Jun Chen, Rong Zhang
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
Wen-Rong Xie, Bin Liu, Tao Tao et al  2017 Chin. Phys. Lett. 34 068103
Download: PDF(784KB)   PDF(mobile)(771KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A sequential deposition method is developed, where the hybrid organic–inorganic halide perovskite (CH$_{3}$NH$_{3}$Pb (I$_{1-x}$Br$_{x}$)$_{3}$) is synthesized using precursor solutions containing CH$_{3}$NH$_{3}$I and PbBr$_{2}$ with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy. Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746 nm to 770 nm with the increase of the reaction time, on account of the exchanges between I$^{-}$ ions and Br$^{-}$ ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
Received: 27 February 2017      Published: 23 May 2017
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  61.82.Rx (Nanocrystalline materials)  
  61.46.Hk (Nanocrystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/068103       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/068103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Rong Xie
Bin Liu
Tao Tao
Guo-Gang Zhang
Bao-Hua Zhang
Zi-Li Xie
Peng Chen
Dun-Jun Chen
Rong Zhang
[1]Liu J Y, Xue Y Z, Wang Z Y, Xu Z Q, Zheng C X, Weber B, Song J C, Wang Y S, Lu Y R and Zhang Y P 2016 ACS Nano 10 3536
[2]Chen Q, De Marco N, Yang Y, Song T B, Chen C C, Zhao H X, Hong Z R, Zhou H P and Yang Y 2015 Nano Today 10 355
[3]Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[4]Zhang T Y, Yang M J, Benson E E, Li Z J, van de Lagemaat J, Luther J M, Yan Y F, Zhu K and Zhao Y X 2015 Chem. Commun. 51 7820
[5]Zhuang S W, Xu D Q, Xu J X, Wu B, Zhang Y T, Dong X, Li G X, Zhang B L and Du G T 2017 Chin. Phys. B 26 017802
[6]Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391
[7]Green M A, HoBaillie A and Snaith H J 2014 Nat. Photon. 8 506
[8]Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao Lei and Huang J S 2015 Science 347 967
[9]Dong J, Xu X, Shi J J, Li D M, Luo Y H, Meng Q B and Chen Q 2015 Chin. Phys. Lett. 32 078401
[10]Wong A B, Lai M L, Eaton S W, Yu Y, Lin E, Dou L, Fu A and Yang P D 2015 Nano Lett. 15 5519
[11]Chen Y, Yang S, Chen X, Zheng Y C, Hou Y, Li Y H, Zeng H D and Yang H G 2015 J. Mater. Chem. 3 15854
[12]Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M and Credgington D 2014 Nat. Nanotechnol. 9 687
[13]Sutherland B R, Hoogland S, Adachi M M, Wong C T O and Sargent E H 2014 ACS Nano 8 10947
[14]Zhu H M, Fu Y P, Meng F, Wu X X, Gong Z Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[15]Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[16]Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[17]McGehee M 2014 Nat. Mater. 13 845
[18]Kumar V B, Gouda L, Porat Z and Gedanken A 2016 Ultrason. Sonochem. 32 54
[19]Yang S, Zheng Y C, Hou Y, Chen X, Chen Y, Wang Y, Zhao H J and Yang H G 2014 Chem. Mater. 26 6705
[20]Zhou H P, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y S and Yang Y 2014 Science 345 542
[21]Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[22]Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, HumphryBaker R, Yum J H, E Moser J, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[23]Fu Y P, Meng F, Rowley M B, Thompson B J, Shearer M J, Ma D W, Hamers R J, Wright J C and Jin S 2015 J. Am. Chem. Soc. 137 5810
[24]Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H and Yang Y 2013 J. Am. Chem. Soc. 136 622
[25]He Y Y, Li Y, Yang X G, Lu K, Liu S Z, Gu L Y and Zheng Z 2016 Appl. Surf. Sci. 389 540
[26]Ball J M, Lee M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739
[27]Liu D Y and Kelly T L 2013 Nat. Photon. 8 133
[28]Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, K Nazeeruddin M and J Bolink H 2013 Nat. Photon. 8 128
[29]Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[30]Im J H, Luo J S, Franckevicius M, Pellet N, Gao P, Moehl T, Mohammed Z, Nazeeruddin M K, Gratzel M and Park N G 2015 Nano Lett. 15 2120
[31]Zhu P C, Gu S, Shen X P, Xu N, Tan Y L, Zhuang S D, Deng Y, Lu Z D, Wang Z L and Zhu J 2016 Nano Lett. 16 871
[32]Liu M Z, Johnston M B and Snaith H J 2013 Nature 501 395
[33]Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[34]Horvath E, Spina M, Szekrenyes Z, Kamaras K, Gaal R, Gachet D and Forro L 2014 Nano Lett. 14 6761
[35]Tavakoli M M, Waleed A, Gu L L, Zhang D Q, Tavakoli R, Lei B B, Su W J, Fang F and Fan Z Y 2017 Nanoscale (accepted)
[36]Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y and Jen A K Y 2014 Adv. Mater. 26 6454
Related articles from Frontiers Journals
[1] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 068103
[2] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 068103
[3] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 068103
[4] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 068103
[5] Yu-Wei Li, Xin Wang, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei. Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals[J]. Chin. Phys. Lett., 2020, 37(1): 068103
[6] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 068103
[7] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 068103
[8] Jian-Kang Wang, Shang-Sheng Li, Ning Wang, Hui-Jie Liu, Tai-Chao Su, Mei-Hua Hu, Fei Han, Kun-Peng Yu, Hong-An Ma. Synthesis and Characteristics of Type Ib Diamond Doped with NiS as an Additive[J]. Chin. Phys. Lett., 2019, 36(4): 068103
[9] Shu-Ping Deng, Feng Cheng, De-Cong Li, Yu Tang, Zhong Chen, Lan-Xian Shen, Hong-Xia Liu, Pei-Zhi Yang, Shu-Kang Deng. Electrical Transport Properties of Type-VIII Sn-Based Single-Crystalline Clathrates (Eu/Ba)$_{8}$Ga$_{16}$Sn$_{30}$ Prepared by Ga Flux Method[J]. Chin. Phys. Lett., 2017, 34(4): 068103
[10] Mei-Qin Fu, Qing-Ling Bi, Yong-Jun Lü. Kinetics of Spherical Interface in Crystal Growth[J]. Chin. Phys. Lett., 2017, 34(4): 068103
[11] GUO Xiao-Fei, XU Bin, WEN Zhen-Xing, FAN Xiao-Hong, TIAN Bin. The near-Surface Region of Cubic Boron Nitride Single Crystal from the Li3N-hBN System[J]. Chin. Phys. Lett., 2014, 31(04): 068103
[12] BAO Han-Bo, QIN Lai-Shun, DING Yan-Guo, LI Zheng-Guo, SHI Hong-Sheng, SHU Kang-Ying. Growth and Scintillation Properties of La(Cl0.05Br0.95)3:Ce Crystal[J]. Chin. Phys. Lett., 2013, 30(8): 068103
[13] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 068103
[14] BAO Li-Hong, ZHANG Jiu-Xing**, ZHOU Shen-Lin, ZHANG Ning, XU Hong . Floating Zone Growth and Thermionic Emission Property of Single Crystal CeB6[J]. Chin. Phys. Lett., 2011, 28(8): 068103
[15] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 068103
Viewed
Full text


Abstract