Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 064201    DOI: 10.1088/0256-307X/34/6/064201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI
Huan Guan1, Zhi-Yong Li1, Hai-Hua Shen2,3**, Yu-De Yu1**
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2University of Chinese Academy of Sciences, Beijing 101408
3State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191
Cite this article:   
Huan Guan, Zhi-Yong Li, Hai-Hua Shen et al  2017 Chin. Phys. Lett. 34 064201
Download: PDF(816KB)   PDF(mobile)(811KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A four-channel integrated optical wavelength de-multiplexer is experimentally illustrated on a silicon-on-insulator (SOI) substrate. With the aid of cascaded micro-ring resonators, the whole performance of the wavelength de-multiplexer is improved, such as 3 dB bandwidth and channel crosstalk. Based on the transform matrix theory, a four-channel wavelength de-multiplexer with average channel spacing 4.5$\pm$0.5 nm (3 dB bandwidth $\sim 2\pm 0.5$ nm) is demonstrated at telecommunication bands. For each channel, the extinction at the adjacent channel is below $-$39 dB and the out-of-band rejection ratio is up to 40 dB. The channel dropping loss is below 5 dB in the five FSR spectral response periods (near 100 nm).
Received: 16 February 2017      Published: 23 May 2017
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016904, the National Key Research and Development Plan of China under Grant No 2016YFB0402502, and the National Natural Science Foundation of China under Grant No 61275065.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/064201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/064201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huan Guan
Zhi-Yong Li
Hai-Hua Shen
Yu-De Yu
[1]Xiao S J, Khan M H, Shen H and Qi M H 2007 Opt. Express 15 7489
[2]Park S, Kim K J, Kim I G and Kim G 2011 Opt. Express 19 13531
[3]Park S, Kim S G, Park J and Kim G 2012 Opt. Express 20 23582
[4]Yang Y D, Li Y, Huang Y Z and Poon A W 2014 Opt. Express 22 22172
[5]Xiong K, Xiao X, Li X Y, Hu Y T, Li Z Y, Chu T, Yu Y D and Yu J Z 2012 Opt. Commun. 285 4368
[6]Chen P X, Chen S T, Guan X W, Shi Y C and Dai D X 2014 Opt. Lett. 39 6304
[7]Malka D, Cohen M, Turkiewicz J and Zalevsky Z 2015 Photon. Nanostruct. –Fundamentals Appl. 16 16
[8]Xia F N, Rooks M, Sekaric L and Vlasov Y 2007 Opt. Express 15 11934
[9]Xiao S J, Khan M H, Shen H and Qi M H 2007 Opt. Express 15 14765
[10]Mansoor R, Sasse H, Ison S and Duffy A 2015 Opt. Quantum Electron. 47 1127
[11]Guan H, Li Z Y, Shen H H, Wang R and Yu Y D 2017 Chin. Phys. Lett. 34 034210
[12]Yu P, Hu T, Qiu C, Shen A, Qiu H Y, Wang F, Jiang X Q, Wang M H and Yang J Y 2013 Chin. Phys. Lett. 30 034210
[13]Tobing L Y M, Dumon P, Baets R and Chin M K 2008 Opt. Lett. 33 2512
[14]Boeck R, Flueckiger J, Chrostowski L and Jaeger N A F 2013 Opt. Express 21 9103
[15]Boeck R, Shi W, Chrostowski L and Jaeger N A F 2013 IEEE Photon. J. 5 2202511
[16]Vlasov Y, Green W M J and Xia F N 2008 Nat. Photon. 2 242
[17]Dahlem M S, Holzwarth C W, Khilo A, Kärtner F X, Smith H I and Ippen E P 2011 Opt. Express 19 306
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 064201
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 064201
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 064201
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 064201
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 064201
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 064201
[7] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 064201
[8] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 064201
[9] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 064201
[10] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 064201
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 064201
[12] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 064201
[13] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 064201
[14] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 064201
[15] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 064201
Viewed
Full text


Abstract