Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 063701    DOI: 10.1088/0256-307X/34/6/063701
ATOMIC AND MOLECULAR PHYSICS |
Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap
Jiu-Zhou He1,2, Lei-Lei Yan1,2, Liang Chen1**, Ji Li1,2, Mang Feng1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Jiu-Zhou He, Lei-Lei Yan, Liang Chen et al  2017 Chin. Phys. Lett. 34 063701
Download: PDF(739KB)   PDF(mobile)(735KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report measurement of heating rates of $^{40}$Ca$^{+}$ ions confined in our home-made microscopic surface-electrode trap by a Doppler recooling method. The ions are trapped with approximately 800 μm above the surface, and are subjected to heating due to various noises in the trap. There are 3–5 ions involved to measure the heating rates precisely and efficiently. We show the heating rates in variance with the number and the position of the ions as well as the radio-frequency power, which are helpful for understanding the trap imperfection.
Received: 19 January 2017      Published: 23 May 2017
PACS:  37.10.Ty (Ion trapping)  
  03.67.Lx (Quantum computation architectures and implementations)  
  41.20.-q (Applied classical electromagnetism)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos Y5Z2111001, 91421111 and 11674360.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/063701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/063701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiu-Zhou He
Lei-Lei Yan
Liang Chen
Ji Li
Mang Feng
[1]Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Inf. Comput. 5 419
[2]Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003
[3]Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A 73 32307
[4]Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R and Chuang I L 2008 Phys. Rev. Lett. 100 13001
[5]Leibrandt D R, Labaziewicz J, Clark R J, Chuang I L, Epstein R J, Ospelkaus C, Wesenberg J H, Bollinger J J, Leibfried D, Wineland D J, Stick D, Sterk J, Monroe C, Pai C S, Low Y and Slusher R E 2009 Quantum Inf. Comput. 9 0910
[6]Allcock D T C, Sherman J A, Stacey D N, Burrell A H, Curtis M J, Imreh G, Linke N M, Szwer D J, Webster S C and Steane A M 2010 New J. Phys. 12 053026
[7]Turchette Q A, Kielpinski D, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 61 063418
[8]Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J and Monroe C 2006 Phys. Rev. Lett. 97 103007
[9]Daniilidis N, Narayanan S, Möller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz St, Schmidt-Kaler F and Häffner H 2011 New J. Phys. 13 013032
[10]Allcock D T C, Guidoni L, Harty T P, Ballance C J, Blain M G, Steane A M and Lucas D M 2011 New J. Phys. 13 123023
[11]Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D and Wineland D J 2012 Phys. Rev. Lett. 109 103001
[12]Charles D S, Amini J M, Wright K, Volin C, Killian T, Ozakin A, Denison D, Hayden H, Pai C S, Slusher R E and Harter A W 2012 New J. Phys. 14 073012
[13]Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259
[14]Dubessy R, Coudreau T and Guidoni L 2009 Phys. Rev. A 80 031402
[15]Guang H L, Herskind P F and Chuang I L 2011 Phys. Rev. A 84 053425
[16]Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419
[17]Bruzewicz C D, Sage J M and Chiaverini J 2015 Phys. Rev. A 91 041402
[18]Hite D A, Colombe Y, Wilson A C, Allcock D T C, Leibfried D, Wineland D J and Pappas D P 2013 MRS Bull. 38 826
[19]Eltony A M, Park H G, Wang S X, Kong J and Chuang I L 2014 Nano Lett. 14 5712
[20]Wesenberg J H, Epstein R J, Leibfried D, Blakestad R B, Britton J, Home J P, Itano W M, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2007 Phys. Rev. A 76 053416
[21]Wan W, Chen L, Wu H Y, Xie Y, Zhou F and Feng M 2013 Chin. Phys. Lett. 30 073701
[22]Yan L L, Wan W, Chen L, Zhou F, Gong S J, Tong X and Feng M 2016 Sci. Rep. 6 21547
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 063701
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 063701
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 063701
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 063701
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 063701
[6] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 063701
[7] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 063701
[8] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 063701
[9] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 063701
[10] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 063701
[11] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 063701
[12] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 063701
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 063701
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 063701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 063701
Viewed
Full text


Abstract