Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 058901    DOI: 10.1088/0256-307X/34/5/058901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Phase Transition in Recovery Process of Complex Networks
Wen Xiao1, Chao Yang2, Ya-Ping Yang1, Yu-Guang Chen1**
1Key Laboratory for Advanced Microstructure Materials (Ministry of Education), School of Physics Science and Engineering, Tongji University, Shanghai 200092
2Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804
Cite this article:   
Wen Xiao, Chao Yang, Ya-Ping Yang et al  2017 Chin. Phys. Lett. 34 058901
Download: PDF(585KB)   PDF(mobile)(573KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamic characteristic of complex network failure and recovery is one of the main research topics in complex networks. Real world systems such as traffic jams and Internet recovery could be described by the complex network theory. We propose a model to study the recovery process in complex networks. Two different recovery mechanisms are considered in three kinds of networks: external recovery and internal recovery. By simulating the process of the nodes recovery in networks, it is found that the system exhibits the feature of first-order phase transition only when the external recovery is considered. Internal recovery cannot induce such a kind of transitions. As external recovery and internal recovery coexist on networks, the systems will retain the most efficient part of external recovery and internal recovery. Meanwhile, a hysteresis could be observed when increasing or decreasing the failure probability. Finally, a largest degree node protection strategy is proposed for improving the robustness of networks.
Received: 13 December 2016      Published: 29 April 2017
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.70.Fh (Phase transitions: general studies)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Supported by the National Natural Science foundation of China under Grant No 11474221.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/058901       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/058901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen Xiao
Chao Yang
Ya-Ping Yang
Yu-Guang Chen
[1]Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2]Yan G, Zhou T, Wang J et al 2005 Chin. Phys. Lett. 22 510
[3]Zhou T and Wang B H 2005 Chin. Phys. Lett. 22 1072
[4]Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826
[5]Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[6]Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[7]Wu J, Barahona M, Tan Y J et al 2010 Chin. Phys. Lett. 27 078902
[8]Kishore V, Santhanam M S and Amritkar R E 2011 Phys. Rev. Lett. 106 188701
[9]Kishore V, Santhanam M S and Amritkar R E 2012 Phys. Rev. E 85 056120
[10]Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[11]Barabási A L and Albert R 1999 Science 286 509
[12]Buldyrev S V, Parshani R, Paul G et al 2010 Nature 464 1025
[13]Chen Z Y and Wang X F 2006 Phys. Rev. E 73 036107
[14]Ezaki T and Nishinari K 2014 Phys. Rev. E 90 022807
[15]Sachtjen M L, Carreras B A and Lynch V E 2000 Phys. Rev. E 61 4877
[16]Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[17]Goh K I, Lee D S, Kahng B et al 2003 Phys. Rev. Lett. 91 148701
[18]Motter A E 2004 Phys. Rev. Lett. 93 098701
[19]Smart A G, Amaral L A and Ottino J M 2008 Proc. Natl. Acad. Sci. USA 105 13223
[20]Gao J, Buldyrev S V, Havlin S et al 2011 Phys. Rev. Lett. 107 195701
[21]Huang X, Gao J, Buldyrev S V et al 2011 Phys. Rev. E 83 065101
[22]Zhou D, Stanley H E, D'Agostino G et al 2012 Phys. Rev. E 86 066103
[23]Gao J, Buldyrev S V, Stanley H E et al 2012 Nat. Phys. 8 40
[24]Wang J 2013 Physica A 392 2257
[25]Blanchard O J and Summers L H 1986 NBER Macroecon. Annu. 1 15
[26]Hernandez T D and Schallert T 1988 Exp. Neurol. 102 318
[27]Wang X G, Lai Y C and Lai C H 2006 Phys. Rev. E 74 066104
[28]Bassan S and Ceder A 2008 Physica A 387 4349
[29]Minoiu C and Reyes J A 2013 J. Financ. Stabil. 9 168
[30]Zhang L, De Gier J and Garoni T M 2014 Physica A 401 82
[31]Ezaki T, Nishi R and Nishinari K 2015 J. Stat. Mech.: Theory and Experiment 2015 P06013
[32]Majdandzic A, Podobnik B, Buldyrev S V et al 2013 Nat. Phys. 10 34
[33]Podobnik B, Horvatic D, Bertella M A et al 2014 Europhys. Lett. 106 68003
[34]Podobnik B, Majdandzic A, Curme C et al 2014 Phys. Rev. E 89 042807
[35]Podobnik B, Horvatic D, Lipic T et al 2015 J. R. Soc. Interface 12 20150770
[36]Di Muro M A, La Rocca C E, Stanley H E et al 2016 Sci. Rep. 6 22834
[37]Gong M, Ma L and Cai Q 2015 Sci. Rep. 5 8439
[38]Shang Y 2016 Sci. Rep. 6 30521
[39]Shekhtman L M, Danziger M M and Havlin S 2016 Chaos Solitons Fractals 90 28
[40]Hu F, Yeung C H, Yang S et al 2016 Sci. Rep. 6 24522
[41]Valdez L D, Muro M A D and Braunstein L A 2016 J. Stat. Mech.: Theory and Experiment 2016 093402
[42]Majdandzic A, Braunstein L A, Curme C et al 2016 Nat. Commun. 7 10850
[43]Wang J 2013 Safety Sci. 53 219
[44]Wang J, Zhang C, Huang Y et al 2014 Nonlinear Dynam. 78 37
[45]Wang J, Wu Y and Li Y 2015 Int. J. Mod. Phys. C 26 1550030
[46]Liu J, Xiong Q, Shi X et al 2016 Physica A 456 302
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 058901
[2] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 058901
[3] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 058901
[4] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 058901
[5] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 058901
[6] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 058901
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 058901
[8] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 058901
[9] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 058901
[10] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 058901
[11] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 058901
[12] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 058901
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 058901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 058901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 058901
Viewed
Full text


Abstract