CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD |
Bo-Ting Liu1, Ping Ma1,2,3,4**, Xi-Lin Li1, Jun-Xi Wang1,2,3,4, Jin-Min Li1,2,3,4** |
1Semiconductor Lighting R&D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 3State Key Laboratory of Solid State Lighting, Beijing 100083 4Beijing Engineering Research Center for the Third-Generation Semiconductor Materials and Application, Beijing 100083
|
|
Cite this article: |
Bo-Ting Liu, Ping Ma, Xi-Lin Li et al 2017 Chin. Phys. Lett. 34 058101 |
|
|
Abstract We investigate the influence of Al preflow time on surface morphology and quality of AlN and GaN. The AlN and GaN layers are grown on a Si (111) substrate by metal organic chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, x-ray diffraction and optical microscopy are used for analysis. Consequently, we find significant differences in the epitaxial properties of AlN buffer and the GaN layer, which are dependent on the Al preflow time. Al preflow layers act as nucleation sites in the case of AlN growth. Compact and uniform AlN nucleation sites are observed with optimizing Al preflow at an early nucleation stage, which will lead to a smooth AlN surface. Trenches and AlN grain clusters appear on the AlN surface while melt-back etching occurs on the GaN surface with excessive Al preflow. The GaN quality variation keeps a similar trend with the AlN quality, which is influenced by Al preflow. With an optimized duration of Al preflow, crystal quality and surface morphology of AlN and GaN could be improved.
|
|
Received: 21 December 2016
Published: 29 April 2017
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400200. |
|
|
[1] | Zhang B J and Liu Y 2014 Chin. Sci. Bull. 59 1251 | [2] | Selvaraj S L, Suzue T and Egawa T 2009 IEEE Electron Device Lett. 30 587 | [3] | Yanagihara M, Uemoto Y, Ueda T et al 2009 Phys. Status Solidi A 206 1221 | [4] | Tripathy S, Lin V K X, Dolmanan S B et al 2012 Appl. Phys. Lett. 101 082110 | [5] | Dadgar A, Hums C, Diez A et al 2006 Proc. SPIE 6355 63550R | [6] | Zhu D, Wallis J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501 | [7] | Dadgar A, Strittmatter A, Blasing J et al 2003 Phys. Status Solidi C 6 1583 | [8] | Moram M A, Kappers M J, Joyce T B et al 2007 J. Cryst. Growth 308 302 | [9] | Komiyama J, Abe Y, Suzuki S et al 2007 J. Cryst. Growth 298 223 | [10] | Chen P, Zhang R, Zhao Z M et al 2001 J. Cryst. Growth 225 150 | [11] | Bao Q, Luo J and Zhao C 2014 Vacuum 101 184 | [12] | Cao J, Li S T, Fan G et al 2010 J. Cryst. Growth 312 2044 | [13] | Radtke G, Couillard M, Botton G A et al 2010 Appl. Phys. Lett. 97 251901 | [14] | Radtke G, Couillard M, Botton G A et al 2012 Appl. Phys. Lett. 100 011910 | [15] | Cheng K, Leys M, Degroote S et al 2006 J. Electron. Mater. 35 592 | [16] | Lange A P, Tan X L, Fadley C S et al 2016 Acta Mater. 115 94 | [17] | Bak S J, Mun D H, Ha J S et al 2013 Electron. Mater. Lett. 9 367 | [18] | Lumbantoruan F, Wong Y Y, Wu Y H, Huang W C, Chang E Y et al 2014 Int. Conf. Semiconductor Electron. (Kuala Lumpur Malaysia 27–29 August 2014) p 20 | [19] | Semond F 2015 MRS Bull. 40 412 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|