Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 058101    DOI: 10.1088/0256-307X/34/5/058101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD
Bo-Ting Liu1, Ping Ma1,2,3,4**, Xi-Lin Li1, Jun-Xi Wang1,2,3,4, Jin-Min Li1,2,3,4**
1Semiconductor Lighting R&D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Solid State Lighting, Beijing 100083
4Beijing Engineering Research Center for the Third-Generation Semiconductor Materials and Application, Beijing 100083
Cite this article:   
Bo-Ting Liu, Ping Ma, Xi-Lin Li et al  2017 Chin. Phys. Lett. 34 058101
Download: PDF(1849KB)   PDF(mobile)(1844KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the influence of Al preflow time on surface morphology and quality of AlN and GaN. The AlN and GaN layers are grown on a Si (111) substrate by metal organic chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, x-ray diffraction and optical microscopy are used for analysis. Consequently, we find significant differences in the epitaxial properties of AlN buffer and the GaN layer, which are dependent on the Al preflow time. Al preflow layers act as nucleation sites in the case of AlN growth. Compact and uniform AlN nucleation sites are observed with optimizing Al preflow at an early nucleation stage, which will lead to a smooth AlN surface. Trenches and AlN grain clusters appear on the AlN surface while melt-back etching occurs on the GaN surface with excessive Al preflow. The GaN quality variation keeps a similar trend with the AlN quality, which is influenced by Al preflow. With an optimized duration of Al preflow, crystal quality and surface morphology of AlN and GaN could be improved.
Received: 21 December 2016      Published: 29 April 2017
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/058101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/058101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo-Ting Liu
Ping Ma
Xi-Lin Li
Jun-Xi Wang
Jin-Min Li
[1]Zhang B J and Liu Y 2014 Chin. Sci. Bull. 59 1251
[2]Selvaraj S L, Suzue T and Egawa T 2009 IEEE Electron Device Lett. 30 587
[3]Yanagihara M, Uemoto Y, Ueda T et al 2009 Phys. Status Solidi A 206 1221
[4]Tripathy S, Lin V K X, Dolmanan S B et al 2012 Appl. Phys. Lett. 101 082110
[5]Dadgar A, Hums C, Diez A et al 2006 Proc. SPIE 6355 63550R
[6]Zhu D, Wallis J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501
[7]Dadgar A, Strittmatter A, Blasing J et al 2003 Phys. Status Solidi C 6 1583
[8]Moram M A, Kappers M J, Joyce T B et al 2007 J. Cryst. Growth 308 302
[9]Komiyama J, Abe Y, Suzuki S et al 2007 J. Cryst. Growth 298 223
[10]Chen P, Zhang R, Zhao Z M et al 2001 J. Cryst. Growth 225 150
[11]Bao Q, Luo J and Zhao C 2014 Vacuum 101 184
[12]Cao J, Li S T, Fan G et al 2010 J. Cryst. Growth 312 2044
[13]Radtke G, Couillard M, Botton G A et al 2010 Appl. Phys. Lett. 97 251901
[14]Radtke G, Couillard M, Botton G A et al 2012 Appl. Phys. Lett. 100 011910
[15]Cheng K, Leys M, Degroote S et al 2006 J. Electron. Mater. 35 592
[16]Lange A P, Tan X L, Fadley C S et al 2016 Acta Mater. 115 94
[17]Bak S J, Mun D H, Ha J S et al 2013 Electron. Mater. Lett. 9 367
[18]Lumbantoruan F, Wong Y Y, Wu Y H, Huang W C, Chang E Y et al 2014 Int. Conf. Semiconductor Electron. (Kuala Lumpur Malaysia 27–29 August 2014) p 20
[19]Semond F 2015 MRS Bull. 40 412
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 058101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 058101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 058101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 058101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 058101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 058101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 058101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 058101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 058101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 058101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 058101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 058101
[13] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 058101
[14] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 058101
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 058101
Viewed
Full text


Abstract