Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 054203    DOI: 10.1088/0256-307X/34/5/054203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tight Focusing Properties of Phase Modulated Radially Polarized Laguerre Bessel Gaussian Beam
K. Prabakaran1*, P. Sangeetha1, V. Karthik1, K. B. Rajesh2, A. M. Musthafa3
1Department of Physics, Mahendra Arts and Science College (Autonomous), Namakkal, Tamilnadu, India
2Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India
3Department of General Studies (Physics Group), Jubail University College (Male Branch), Royal Commission of Jubail, Kingdom of Saudi Arabia
Cite this article:   
K. Prabakaran, P. Sangeetha, V. Karthik et al  2017 Chin. Phys. Lett. 34 054203
Download: PDF(1151KB)   PDF(mobile)(1139KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.
Received: 15 January 2017      Published: 29 April 2017
PACS:  42.25.Ja (Polarization)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.30.Lr (Modulation and optical transfer functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/054203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/054203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Prabakaran
P. Sangeetha
V. Karthik
K. B. Rajesh
A. M. Musthafa
[1]Sheppard C J R and Saghafi S 1999 Opt. Lett. 24 1543
[2]Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
[3]Kozawa Y, Yonezawa K and Sato S 2007 Appl. Phys. B 88 43
[4]Richard B and Wolf E 1959 Proc. R. Soc. A 253 358
[5]Cicchitelli L, Hora H and Postle R 1990 Phys. Rev. A 41 3727
[6]Sheppard C J R 1978 Microw. Opt. Acoust. 2 163
[7]Rosenzweig J, Murokh A and Pellegrini C 1995 Phys. Rev. Lett. 74 2467
[8]Novotny L, Beversluis M R, Youngworth K S and Brown T 2001 Phys. Rev. Lett. 86 5251
[9]Yew E Y S and Sheppard C J R 2007 Opt. Commun. 275 453
[10]Hayazawa N, Saito Y and Kawata S 2004 Appl. Phys. Lett. 85 6239
[11]Huse N, Schonle A and Hell S W 2001 J. Biomed. Opt. 6 480
[12]Xiao M 1997 J. Opt. Soc. Am. A 14 2977
[13]Wang H, Shi L, Lukyanchuk B, Sheppard C and Chong C T 2008 Nat. Photon. 2 501
[14]Sheppard C J R 1999 Opt. Lett. 24 505
[15]Sun C and Liu C 2003 Opt. Lett. 28 99
[16]Chen W and Zhan Q 2006 Opt. Commun. 265 411
[17]Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[18]Unger B T and Marston P L 1988 J. Acoust. Soc. Am. 83 970
[19]Crocker J C and Grier D 1994 Phys. Rev. Lett. 73 352
[20]Wright W H, Sonek G, Tadir Y and Berns M W 1990 IEEE J. Quantum Electron. 26 2148
[21]Tadir Y, Wright W H, Vafa O, Ord T, Asch R H and Berns M W 1989 Fertil. Steril. 52 870
[22]Youngworth K S and Brown T G 2000 Opt. Express 7 77
[23]Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2007 Opt. Lett. 32 1468
[24]Kozawa Y and Sato S 2006 Opt. Lett. 31 820
[25]Kawauchi H, Yonezawa K and Kozawa Y 2007 Opt. Lett. 32 1839
[26]Tian B and Pu J 2011 Opt. Lett. 36 2014
[27]Guo H, Dong X, Weng X, Sui G, Yang N and Zhuang S 2011 Opt. Lett. 36 2200
[28]Eriksen R L, Mogensen P C and Glückstad J 2002 Opt. Lett. 27 267
[29]Casaburi A, Pesce G and Zemánek P 2005 Opt. Commun. 251 393
[30]Prabakaran K, Rajesh K B, Pillai T V S, Chandrasekaran R and Jaroszewicz Z 2013 Optik 124 5086
[31]Jianwei C, Qingkui C and Hanming G 2013 Optik 124 2033
[32]Yiqiong Z, Qiwen Z, Yanli Z and Yong P L 2005 Opt. Lett. 30 848
[33]Nie Z, Shi G, Li D, Zhang X, Wang Y and Song Y 2015 Phys. Lett. A 379 857
[34]Huang K, Shi P, Kang X L, Zhang X and Li Y P 2010 Opt. Lett. 35 965
[35]Kitamura K, Sakai K and Noda S 2010 Opt. Express 18 4518
[36]Prabakaran K and Rajesh K B 2014 Optik 125 7013
Related articles from Frontiers Journals
[1] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 054203
[2] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 054203
[3] Jian-Xing Zhao, Jian-Lin Song, Yao Zhou, Yi-Chao Liu, Jian-Hong Zhou. Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial *[J]. Chin. Phys. Lett., 0, (): 054203
[4] Jian-Xing Zhao, Jian-Lin Song, Yao Zhou, Yi-Chao Liu, Jian-Hong Zhou. Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial[J]. Chin. Phys. Lett., 2020, 37(6): 054203
[5] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 054203
[6] Meng Li, Gui-zhong Zhang, Xin Ding, Jian-quan Yao. Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices[J]. Chin. Phys. Lett., 2019, 36(6): 054203
[7] Yong Zhang, Xian-Ke Li, Cheng-Ping Huang. High-Efficiency Wide-Band Cross-Polarization Conversion Using Bi-layered Metal Hole Pairs[J]. Chin. Phys. Lett., 2018, 35(10): 054203
[8] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 054203
[9] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 054203
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 054203
[11] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 054203
[12] C. A. P. Janet, M. Lavanya, K. B. Rajesh, M. Udhayakumar, Z. Jaroszewicz, D. Velauthapillai. Tight Focusing Properties of Azimuthally Polarized Pair of Vortex Beams through a Dielectric Interface[J]. Chin. Phys. Lett., 2017, 34(7): 054203
[13] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 054203
[14] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 054203
[15] C. A. P. Janet, K. B. Rajesh, M. Udhayakumar, Z. Jaroszewicz, T. V. S. Pillai. Tight Focusing Properties of Radially Polarized Gaussian Beams with Pair of Vortices[J]. Chin. Phys. Lett., 2016, 33(12): 054203
Viewed
Full text


Abstract