Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 054201    DOI: 10.1088/0256-307X/34/5/054201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Holmium Oxide Film as a Saturable Absorber for 2μm Q-Switched Fiber Laser
M. F. A. Rahman1, M. F. M. Rusdi1, M. Q. Lokman1, M. B. H. Mahyuddin1, A. A. Latiff2**, A. H. A. Rosol3, K. Dimyati1, S. W. Harun1**
1Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
2Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
3Faculty of Electrical Engineering, University Teknologi Mara, Shah Alam 40450, Malaysia
Cite this article:   
M. F. A. Rahman, M. F. M. Rusdi, M. Q. Lokman et al  2017 Chin. Phys. Lett. 34 054201
Download: PDF(1012KB)   PDF(mobile)(1010KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work reports on the use of the holmium oxide (Ho$_{2}$O$_{3})$ polymer film as a saturable absorber (SA) for generating stable Q-switching pulses operating in a 2-μm region in a thulium-doped fiber laser cavity. The SA is prepared by diluting a commercial Ho$_{3}$O$_{2}$ powder and then mixing it with polyvinyl alcohol (PVA) solution to form a Ho$_{2}$O$_{3}$-PVA film. A tiny part of the film about 1 mm$\times$1 mm in size is sandwiched between two fiber ferrules with the help of index matching gel. When incorporated in a laser cavity driven by a 1552-nm pump, stable Q-switching pulses are observed at 1955 nm within the pump power range of 363–491 mW. As the pump power increases within this range, the repetition rate rises from 26 kHz to 39 kHz, as the pulse width drops from 4.22 μs to 2.57 μs. The laser operates with a signal-to-noise ratio of 47 dB, and the maximum output power and the pulse energy obtained are 2.67 mW and 69 nJ, respectively. Our results successfully demonstrate that the Ho$_{2}$O$_{3 }$ film can be used as a passive SA to generate a 2-μm pulse laser.
Received: 03 March 2017      Published: 29 April 2017
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/054201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/054201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. F. A. Rahman
M. F. M. Rusdi
M. Q. Lokman
M. B. H. Mahyuddin
A. A. Latiff
A. H. A. Rosol
K. Dimyati
S. W. Harun
[1]Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V, Konov V I and Dianov E M 2008 Opt. Lett. 33 1336
[2]Luo Z Q, Huang Y Z, Zhong M, Li Y Y, Wu J Y, Xu B, Xu H Y, Cai Z P, Peng J and Weng J 2014 J. Lightwave Technol. 32 4679
[3]Ahmad H, Zulkifli A, Thambiratnam K and Harun S 2013 IEEE Photon. J. 5 1501108
[4]Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797
[5]Tarka J, Boguslawski J, Zybala R, Kowalczyk M, Sobon G and Sotor J 2016 Proc. SPIE LASE: Int. Soc. For Opt. Photon. p 972820
[6]Olsen R C 2007 Remote Sensing From Air Space (Bellingham: SPIE Press) vol 162
[7]Scholle K, Fuhrberg P, Koopmann P and Lamrini S 2010 Two-Micron Laser Sources and Their Possible Applications (Croatia: INTECH Open Access Publisher)
[8]Harun S W, Paul M C, Das S, Dhar A and Ahmad H 2016 Photon. Lett. Poland 8 104
[9]Wang Q, Chen T, Zhang B, Li M, Lu Y and Chen K P 2013 Appl. Phys. Lett. 102 131117
[10]Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630
[11]Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
[12]Lu S, Miao L, Guo Z, Qi X, Zhao C, Zhang H, Wen S, Tang D and Fan D 2015 Opt. Express 23 11183
[13]Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227
[14]Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C and Cai Z 2010 Opt. Lett. 35 3709
[15]Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H, Cai Z, Lin Z, Sun L and Weng J 2014 IEEE J. Sel. Top. Quantum Electron. 20 1
[16]Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106
[17]Ning Q Y, Liu H, Zheng X W, Yu W, Luo A P, Huang X G, Luo Z C, Xu W C, Xu S H and Yang Z M 2014 Opt. Express 22 11900
[18]Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D and Loh K 2014 Opt. Express 22 7249
[19]Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H and Liu Y 2016 Sci. Rep. 6 30361
[20]Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X and Sun Z 2015 Sci. Rep. 5 15899
[21]Latiff A, Kadir N, Ismail E, Shamsuddin H, Ahmad H and Harun S 2017 Opt. Commun. 389 29
[22]Latiff A, Shamsudin H, Tiu Z, Ahmad H and Harun S 2016 J. Nonlinear Opt. Phys. Mater. 25 1650034
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 054201
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 054201
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 054201
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 054201
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 054201
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 054201
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 054201
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 054201
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 054201
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 054201
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 054201
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 054201
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 054201
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 054201
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 054201
Viewed
Full text


Abstract