Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050601    DOI: 10.1088/0256-307X/34/5/050601
GENERAL |
Direct Laser Cooling Al$^+$ Ion Optical Clocks
Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu**
MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Jie Zhang, Ke Deng, Jun Luo et al  2017 Chin. Phys. Lett. 34 050601
Download: PDF(574KB)   PDF(mobile)(556KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Al$^+$ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al$^+$ ion optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al$^+$ traps are utilized. The first trap is used to trap a large number of Al$^+$ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al$^+$ ion to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach $9.0\times10^{-17}/\sqrt{\tau}$. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed 234 nm two-photon cooling laser is utilized to further improve the accuracy of the clock laser. The total systematic uncertainty can be reduced to about $1\times10^{-18}$. The proposed Al$^+$ ion optical clock has the potential to become the most accurate and stable optical clock.
Received: 19 January 2017      Published: 29 April 2017
PACS:  06.30.Ft (Time and frequency)  
  37.10.Ty (Ion trapping)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB821300, the National Natural Science Foundation of China under Grant Nos 91336213, 11304109, 91536116 and 11174095, and the Program for New Century Excellent Talents by the Ministry of Education under Grant No NCET-11-0176.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050601       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Zhang
Ke Deng
Jun Luo
Ze-Huang Lu
[1]Hänsch T W 2006 Rev. Mod. Phys. 78 1297
[2]Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[3]Steinmetz T et al 2008 Science 321 1335
[4]Godun R M et al 2014 Phys. Rev. Lett. 113 210801
[5]Huntemann N, Lipphardt B, Tamm Chr, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802
[6]Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S and Jefferts S R 2014 Metrologia 51 174
[7]Chen J b 2009 Chin. Sci. Bull. 54 348
[8]Oskay W H et al 2006 Phys. Rev. Lett. 97 020801
[9]Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501(R)
[10]Dubé P, Madej A A, Tibbo M and Bernard J E 2014 Phys. Rev. Lett. 112 173002
[11]King S A, Godun R M, Webster S A, Margolis H S, Johnson L A M, Szymaniec K, Baird P E G and Gill P 2012 New J. Phys. 14 013045
[12]Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801
[13]Hashimoto Y, Kitaoka M, Yoshida T and Hasegawa S 2011 Appl. Phys. B 103 339
[14]Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
[15]Wang Y H, Dumke R, Liu T, Stejskal A, Zhao Y N, Zhang J, Lu Z H, Wang L J, Becker T and Walther H 2007 Opt. Commun. 273 526
[16]Koerber T W, Schacht M H, Hendrickson K R G, Nagourney W and Fortson E N 2002 Phys. Rev. Lett. 88 143002
[17]Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288
[18]Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[19]Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[20]McFerran J J, Yi L, Mejri S, Di S, Zhang W, Guéna J, Le Y and Bize S 2012 Phys. Rev. Lett. 108 183004
[21]Safronova M S, Kozlov M G and Clark C W 2011 Phys. Rev. Lett. 107 143006
[22]Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L and Ye J 2012 Phys. Rev. Lett. 109 230801
[23]Yu N, Dehmelt H and Nagourney W 1992 Proc. Nati. Acad. Sci. USA 89 7289
[24]Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[25]Rosenband T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett. 98 220801
[26]Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[27]Chi M, Erbert G, Sumpf B and Petersen P M 2010 Opt. Lett. 35 1545
[28]Chen C, Wang G, Wang X and Xu Z 2009 Appl. Phys. B 97 9
[29]Kanai T, Kanda T, Sekikawa T, Watanabe S, Togashi T, Chen C, Zhang C, Xu Z and Wang J 2004 J. Opt. Soc. Am. B 21 370
[30]Scholz M, Opalevs D, Leisching P, Kaenders W, Wang G, Wang X, Li R and Chen C 2012 Opt. Express 20 18659
[31]Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[32]Keller J, Partner H L, Burgermeister T and Mehlstäubler T E 2015 J. Appl. Phys. 118 104501
[33]Binnewies T, Wilpers G, Sterr U, Riehle F, Helmcke J, Mehlstäubler T E, Rasel E M and Ertmer W 2001 Phys. Rev. Lett. 87 123002
[34]Magno W C, Cavasso Filho R L and Cruz F C 2003 Phys. Rev. A 67 043407
[35]Malossi N et al 2005 Phys. Rev. A 72 051403(R)
[36]Kielpinski D 2006 Phys. Rev. A 73 063407
[37]Borregaard J and Sørensen A S 2013 Phys. Rev. Lett. 111 090802
[38]Rosenband T and Leibrandt D R 2013 arXiv:1303.6357v2
[39]Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 Nat. Photon. 6 687
[40]Prestage J D, Tjoelker R L, Dick G J and Maleki L 1993 Proc. IEEE Int. Frequency Control Symp. 47 148
[41]Prestage J D, Tjoelker R L and Maleki L 1999 Proc. IEEE Inter. Freq. Control Symp. 53 121
[42]Drewsen M, Brodersen C, Hornekær L, Hangst J S and Schiffer J P 1998 Phys. Rev. Lett. 81 2878
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 050601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 050601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 050601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 050601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 050601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 050601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 050601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 050601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 050601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 050601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 050601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 050601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 050601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 050601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 050601
Viewed
Full text


Abstract