Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050503    DOI: 10.1088/0256-307X/34/5/050503
GENERAL |
Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization
Jing Chen1,2, Hai-Jun Liao1**, Hai-Dong Xie1,2, Xing-Jie Han1,2, Rui-Zhen Huang1,2, Song Cheng1,2, Zhong-Chao Wei3, Zhi-Yuan Xie4,1, Tao Xiang1,2,5**
1Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Institute for Theoretical Physics, University of Cologne, Cologne 50937, Germany
4Department of Physics, Renmin University of China, Beijing 100872
5Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Jing Chen, Hai-Jun Liao, Hai-Dong Xie et al  2017 Chin. Phys. Lett. 34 050503
Download: PDF(746KB)   PDF(mobile)(640KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the critical behavior and the duality property of the ferromagnetic $q$-state clock model on the square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in the original and dual lattices, we obtain the exact self-dual points for the model with $q \leq 5 $ and approximate self-dual points for $q \geq 6$. We calculate accurately the lower and upper critical temperatures for the six-state clock model from the fixed-point tensors determined using the higher-order tensor renormalization group method and compare with other numerical results.
Received: 24 April 2017      Published: 29 April 2017
PACS:  05.10.Cc (Renormalization group methods)  
  75.10.Hk (Classical spin models)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11474331.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050503       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Chen
Hai-Jun Liao
Hai-Dong Xie
Xing-Jie Han
Rui-Zhen Huang
Song Cheng
Zhong-Chao Wei
Zhi-Yuan Xie
Tao Xiang
[1]Berezinskii V L 1971 Sov. Phys. JETP 32 493
[2]Kosterlitz J M and Thouless D J 1972 J. Phys. C 5 L124
[3]Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[4]José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217
[5]Potts R B 1952 Math. Proc. Camb. Phil. Soc. 48 106
[6]Ortiz G, Cobanera E and Nussinov Z 2012 Nucl. Phys. B 854 780
[7]Cardy J L 1980 J. Phys. A 13 1507
[8]Alcaraz F C and Koberle R 1980 J. Phys. A 13 L153
[9]Lapilli C M, Pfeifer P and Wexler C 2006 Phys. Rev. Lett. 96 140603
[10]Tobochnik J 1982 Phys. Rev. B 26 6201
[11]Challa M S S and Landau D P 1986 Phys. Rev. B 33 437
[12]Yamagata A and Ono I 1991 J. Phys. A 24 265
[13]Tomita Y and Okabe Y 2002 Phys. Rev. B 65 184405
[14]Hwang C O 2009 Phys. Rev. E 80 042103
[15]Brito A F, Redinz J A and Plascak J A 2010 Phys. Rev. E 81 031130
[16]Baek S K and Minnhagen P 2010 Phys. Rev. E 82 031102
[17]Kumano Y, Hukushima K, Tomita Y and Oshikawa M 2013 Phys. Rev. B 88 104427
[18]Krcmar R, Gendiar A and Nishino T 2016 arXiv:1612.07611v1
[19]Chatelain C 2014 J. Stat. Mech.: Theory Experiment 2014 P11022
[20]Vidal G 2003 Phys. Rev. Lett. 91 147902
[21]Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[22]Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[23]Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[24]Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[25]Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[26]Evenbly G and Vidal G 2016 Phys. Rev. Lett. 116 040401
[27]Yang S, Gu Z C and Wen X G 2017 Phys. Rev. Lett. 118 110504
[28]Kramers H A and Wannier G H 1941 Phys. Rev. 60 252
[29]Yu J F, Xie Z Y, Meurice Y, Liu Y, Denbleyker A, Zou H, Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308
[30]Wang S, Xie Z Y, Chen J, Bruce N and Xiang T 2014 Chin. Phys. Lett. 31 070503
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 050503
[2] Teng Liu, Gao-Ke Hu, Jia-Qi Dong, Jing-Fang Fan, Mao-Xin Liu, and Xiao-Song Chen. Renormalization Group Theory of Eigen Microstates[J]. Chin. Phys. Lett., 2022, 39(8): 050503
[3] X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, and Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models[J]. Chin. Phys. Lett., 2022, 39(6): 050503
[4] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 050503
[5] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 050503
[6] WANG Shun, XIE Zhi-Yuan, CHEN Jing, Bruce Normand, XIANG Tao. Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice[J]. Chin. Phys. Lett., 2014, 31(07): 050503
[7] MA Yong-Jun, WANG Jia-Xiang, XU Xin-Ye, WEI Qi, Sabre Kais. Error Analysis of the Density-Matrix Renormalization Group Algorithm for a Chain of Harmonic Oscillators[J]. Chin. Phys. Lett., 2014, 31(06): 050503
[8] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 050503
[9] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 050503
[10] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 050503
[11] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 050503
Viewed
Full text


Abstract