Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050502    DOI: 10.1088/0256-307X/34/5/050502
GENERAL |
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model
Ya-Tong Zhou1**, Yu Fan1,2, Zi-Yi Chen3, Jian-Cheng Sun4
1School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401
2Weinan Meteorological Bureau, Weinan 714000
3Department of Statistical Science, Cornell University, Ithaca 14853, USA
4School of Software and Communication Engineering, Jiangxi University of Finance and Economics, Nanchang 330013
Cite this article:   
Ya-Tong Zhou, Yu Fan, Zi-Yi Chen et al  2017 Chin. Phys. Lett. 34 050502
Download: PDF(1061KB)   PDF(mobile)(1066KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expectation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHC-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval. SHC-EM outperforms the traditional variational learning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.
Received: 18 November 2016      Published: 29 April 2017
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 60972106, the China Postdoctoral Science Foundation under Grant No 2014M561053, the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108, and the Hebei Province Natural Science Foundation under Grant No E2016202341.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050502       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Tong Zhou
Yu Fan
Zi-Yi Chen
Jian-Cheng Sun
[1]Takens F 1981 Dynamical Systems and Turbulence (Berlin: Springer-Verlag) chap 9 p 366
[2]Cui W Z, Zhu C C and Bao W X 2004 Acta Phys. Sin. 53 3303 (in Chinese)
[3]Sun J C, Zheng C X and Zhou Y T 2008 Neurocomputing 71 3675
[4]Zhou Y T, Zhang T Y and Sun J C 2007 Chin. Phys. Lett. 24 42
[5]Zhou Y T, Zhang T Y and Li X H 2006 Lecture Notes in Computer Science 4224 183
[6]Leung H, Titus L and Wang S C 2004 IEEE Trans. Signal Proc. 52 3409
[7]Brillinger D R 1981 Time Series, Data Analysis and Theory (New York: McGraw-Hill) chap 4 p 121
[8]Ross J and Dy J 2013 Proc. ICML-13 (Atlanta USA 16–21 June 2013) p 1346
[9]Yuksel S E, Wilson J N and Gader P D 2012 IEEE Trans. Neur. Net. Lear. Sys. 23 1177
[10]Yuan C and Neubauer C 2008 Advances in Neural Information Processing Systems (Cambridge: MIT Press) chap 8 p 1897
[11]Chen Z Y, Ma J W and Zhou Y T 2014 Intelligent Computing Methodologies (Berlin: Springer-Verlag) chap 1 p 68
[12]Shi J Q, Murray S R and Titterington D M 2005 Statistics Computing 15 31
[13]Platanios E A and Chatzis S P 2014 IEEE Trans. Patt. Anal. Mach. Inte. 36 888
[14]Sun S and Xu X 2011 IEEE Trans. Intel. Trans. Sys. 12 466
[15]Stachniss C, Plagemann C, Lilienthal A J et al 2008 Robotics: Science and Systems (Cambridge: MIT Press) chap 5 p 310
[16]Wu D, Chen Z Y and Ma J W 2015 Proc. ISNN'15 (Jeju Korea 15–18 October 2015) p 327
[17]Chen Z Y, Ma J W and Zhou Y T 2014 Proc. ICIC'14 (Taiyuan China 3–6 August 2014) p 68
[18]Murphy K P 2012 Machine Learning: A Probabilistic Perspective (Cambridge: MIT Press) chap 2 p 69
[19]Steven H and Strogatz R 2013 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (New York: Harper Collins) chap 1 p 8
[20]Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Syst. 33 1072
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050502
[8] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050502
[9] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050502
[10] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050502
[11] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050502
[12] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 050502
[13] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050502
[14] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050502
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 050502
Viewed
Full text


Abstract